|
@@ -1,8 +1,9 @@
|
|
|
"""
|
|
|
-
|
|
|
Generalized parameter-efficient finetuning module that supports deep prompts, bitfit, and several types of adapters.
|
|
|
Designed to be used on both client and server side.
|
|
|
|
|
|
+Note: if you want to fine-tune a model in a way that is not covered by this module, please implement the
|
|
|
+necessary parts on client side and keep the server-side code unchanged.
|
|
|
"""
|
|
|
from enum import Enum
|
|
|
from typing import Optional
|
|
@@ -27,11 +28,13 @@ class TransformerBlockPEFT(nn.Module):
|
|
|
self.hidden_size = hidden_size
|
|
|
|
|
|
# "deep" prompts, applied to the outputs of each layer (https://arxiv.org/abs/2110.07602)
|
|
|
- self.prompts = nn.Parameter(DUMMY) # dummy or [batch_size or 1, seq_length_prefix, hid_size]
|
|
|
+ self.output_prompts = nn.Parameter(DUMMY) # dummy or [batch_size or 1, seq_length_prefix, hid_size]
|
|
|
|
|
|
- # adapter input projection; used for output adapters, can be reused for other adapters
|
|
|
- self.key_adapter = LowRankAdapter
|
|
|
- self.adapter_in_bias = nn.Parameter(DUMMY) # [hid_size]
|
|
|
+ self.attention_query_adapter = GenericAdapter(self.hidden_size)
|
|
|
+ self.attention_key_adapter = GenericAdapter(self.hidden_size)
|
|
|
+ self.attention_value_adapter = GenericAdapter(self.hidden_size)
|
|
|
+ self.attention_out_adapter = GenericAdapter(self.hidden_size)
|
|
|
+ self.mlp_in_adapter = GenericAdapter(self.hidden_size)
|
|
|
|
|
|
# output projection, applied to the residual layer after MLP
|
|
|
self.adapter_out_weight = nn.Parameter(DUMMY) # [adapter_dim, hid_size or hid_size * 2]
|
|
@@ -40,7 +43,6 @@ class TransformerBlockPEFT(nn.Module):
|
|
|
|
|
|
# planned:
|
|
|
# strategy: define
|
|
|
-# - remove the part that stacks multiplicative and additive adapter weights - it does not help!
|
|
|
# - check that LowRankAdapter works :)
|
|
|
# - implement a function that converts lowrank adapter to [list_of_tensors, metadata]
|
|
|
# - pass list of tensors and metadata in chained requests
|
|
@@ -48,15 +50,16 @@ class TransformerBlockPEFT(nn.Module):
|
|
|
# - check exact match with local layer
|
|
|
|
|
|
|
|
|
-class LowRankAdapter(nn.Module):
|
|
|
- def __init__(self, hidden_size: int):
|
|
|
+class GenericAdapter(nn.Module):
|
|
|
+ def __init__(self, in_features: int, out_features: int):
|
|
|
super().__init__()
|
|
|
- self.hidden_size = hidden_size
|
|
|
- self.in_proj = nn.Parameter(DUMMY, requires_grad=False) # [rank, hid_size]
|
|
|
- self.hid_bias = nn.Parameter(DUMMY, requires_grad=False) # [rank]
|
|
|
- self.out_proj = nn.Parameter(DUMMY, requires_grad=False) # [hid_size or 2 * hid_size, rank]
|
|
|
- self.out_scale = nn.Parameter(DUMMY, requires_grad=False) # [hid_size]
|
|
|
- self.out_bias = nn.Parameter(DUMMY, requires_grad=False) # [hid_size]
|
|
|
+ self.in_features, self.out_features = in_features, out_features
|
|
|
+ self.in_proj = nn.Parameter(DUMMY, requires_grad=False) # [rank, in_features]
|
|
|
+ self.hid_bias = nn.Parameter(DUMMY, requires_grad=False) # [rank]
|
|
|
+ self.out_proj = nn.Parameter(DUMMY, requires_grad=False) # [out_features, rank]
|
|
|
+ self.out_bias = nn.Parameter(DUMMY, requires_grad=False) # [out_features]
|
|
|
+ self.out_scale_proj = nn.Parameter(DUMMY, requires_grad=False) # [out_features, rank]
|
|
|
+ self.out_scale = nn.Parameter(DUMMY, requires_grad=False) # [out_features]
|
|
|
self.register_buffer("activation", torch.tensor(0, torch.int64), persistent=True) # []
|
|
|
|
|
|
def forward(self, input: torch.Tensor, base_output: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
@@ -66,40 +69,22 @@ class LowRankAdapter(nn.Module):
|
|
|
:return: adjusted output, after using the low-rank adapter
|
|
|
"""
|
|
|
base_output = base_output if base_output is not None else input
|
|
|
+ dtype, device = input.dtype, input.device
|
|
|
has_scale, has_bias = not is_dummy(self.out_scale), not is_dummy(self.out_bias)
|
|
|
has_adapter = not is_dummy(self.in_proj)
|
|
|
|
|
|
# adapter components
|
|
|
- additive = self.out_bias if has_bias else None
|
|
|
- multiplicative = self.out_scale if has_scale else None
|
|
|
+ additive = self.out_bias if has_bias else torch.zeros(self.out_features, dtype=dtype, device=device)
|
|
|
+ multiplicative = self.out_scale if has_scale else torch.ones(self.out_features, dtype=dtype, device=device)
|
|
|
|
|
|
if has_adapter:
|
|
|
hid = F.linear(input, weight=self.in_proj, bias=None if is_dummy(self.in_bias) else self.in_bias)
|
|
|
-
|
|
|
- if self.activation:
|
|
|
- activation_fn = _ACTIVATIONS_BY_INDEX[int(self.activation.item())]
|
|
|
- hid = activation_fn(hid)
|
|
|
-
|
|
|
- if self.out_proj.shape[0] == self.hidden_size:
|
|
|
+ hid = _ACTIVATIONS_BY_INDEX[int(self.activation.item())](hid)
|
|
|
+ if not is_dummy(self.out_proj):
|
|
|
additive = F.linear(hid, self.out_proj, bias=additive)
|
|
|
-
|
|
|
- elif self.out_proj.shape[0] == 2 * self.hidden_size:
|
|
|
- bias_and_scale = None
|
|
|
- if has_scale or has_bias:
|
|
|
- scale_or_ones = self.out_scale if has_scale else torch.ones_like(self.out_bias)
|
|
|
- bias_or_zeros = self.out_bias if has_bias else torch.zeros_like(self.out_scale)
|
|
|
- bias_and_scale = torch.cat([bias_or_zeros, scale_or_ones], dim=0)
|
|
|
- combined_out = F.linear(hid, self.out_proj, bias=bias_and_scale)
|
|
|
- additive, multiplicative = combined_out.split(self.hidden_size, dim=-1)
|
|
|
-
|
|
|
- if additive is not None and multiplicative is not None:
|
|
|
- return torch.addcmul(additive, base_output, multiplicative)
|
|
|
- elif additive is not None:
|
|
|
- return additive.add_(base_output)
|
|
|
- elif multiplicative is not None:
|
|
|
- return base_output * multiplicative
|
|
|
- else:
|
|
|
- return base_output
|
|
|
+ if not is_dummy(self.out_scale_proj):
|
|
|
+ multiplicative = F.linear(hid, self.out_scale_proj, bias=multiplicative)
|
|
|
+ return torch.addcmul(additive, base_output, multiplicative)
|
|
|
|
|
|
@property
|
|
|
def rank(self) -> int:
|
|
@@ -109,12 +94,12 @@ class LowRankAdapter(nn.Module):
|
|
|
class ACTIVATIONS(Enum):
|
|
|
# enum of allowed activations for server-side adapters; linear activation is represented with DUMMY tensor
|
|
|
# beware: these activations should be backwards compatible! new activations can only be added to the end of the list
|
|
|
- relu, gelu, relu6, leaky_relu, sigmoid, tanh = range(1, 7)
|
|
|
+ linear, relu, gelu, relu6, leaky_relu, sigmoid, tanh = range(7)
|
|
|
|
|
|
|
|
|
for act in list(ACTIVATIONS)[1:]:
|
|
|
assert hasattr(F, act.name), act.name
|
|
|
|
|
|
-_ACTIVATIONS_BY_INDEX = {act.value: getattr(F, act.name) for act in ACTIVATIONS}
|
|
|
+_ACTIVATIONS_BY_INDEX = {act.value: getattr(F, act.name) for act in list(ACTIVATIONS)[1:]}
|
|
|
_ACTIVATIONS_BY_INDEX[0] = lambda x: x
|
|
|
|