|
@@ -0,0 +1,52 @@
|
|
|
+import argparse
|
|
|
+
|
|
|
+import torch
|
|
|
+from hivemind.utils.logging import use_hivemind_log_handler, get_logger
|
|
|
+
|
|
|
+from src.bloom.model import DistributedBloomConfig
|
|
|
+from src.bloom.block import BloomBlock
|
|
|
+from src.bloom.ops import build_alibi_tensor
|
|
|
+from tqdm.auto import trange
|
|
|
+
|
|
|
+
|
|
|
+use_hivemind_log_handler("in_root_logger")
|
|
|
+logger = get_logger(__file__)
|
|
|
+
|
|
|
+
|
|
|
+def print_device_info(device=None):
|
|
|
+ """Prints device stats. Code from https://stackoverflow.com/a/53374933/12891528"""
|
|
|
+ device = torch.device(device or ("cuda" if torch.cuda.is_available() else "cpu"))
|
|
|
+ logger.info(f"Using device: {device}")
|
|
|
+
|
|
|
+ # Additional Info when using cuda
|
|
|
+ if device.type == "cuda":
|
|
|
+ logger.info(torch.cuda.get_device_name(0))
|
|
|
+ logger.info(f"Memory Usage:")
|
|
|
+ logger.info(f"Allocated: {round(torch.cuda.memory_allocated(0) / 1024 ** 3, 1)} GB")
|
|
|
+ logger.info(f"Cached: {round(torch.cuda.memory_cached(0) / 1024 ** 3, 1)} GB")
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ parser = argparse.ArgumentParser(description="Run a single bloom block locally on dummy data")
|
|
|
+ parser.add_argument("--config", required=True, type=str, help="Path to a config json file")
|
|
|
+ parser.add_argument("--state_dict", default=None, type=str, help="Optional path to saved block state dict")
|
|
|
+ parser.add_argument("--layer_index", default=0, type=int, help="Optional path to saved block state dict")
|
|
|
+ parser.add_argument("--num_steps", default=500, type=int, help="How many inference steps to run")
|
|
|
+ parser.add_argument("--device", default=None, type=str, help="Run inference on this device")
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ if args.device is None:
|
|
|
+ args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
+
|
|
|
+ config = DistributedBloomConfig.from_json_file(args.config)
|
|
|
+ block = BloomBlock(config, args.layer_index).to(args.device)
|
|
|
+
|
|
|
+ cache = None
|
|
|
+
|
|
|
+ for i in trange(args.num_steps):
|
|
|
+ dummy_input = torch.randn(1, 1, config.hidden_size, device=args.device)
|
|
|
+ alibi = build_alibi_tensor(i + 1, config.num_attention_heads).to(args.device)
|
|
|
+ with torch.no_grad():
|
|
|
+ outputs, cache = block.forward(dummy_input, alibi=alibi, use_cache=True, layer_past=cache)
|
|
|
+
|
|
|
+ print_device_info(args.device)
|