|
@@ -0,0 +1,67 @@
|
|
|
+"""
|
|
|
+Utils for fetching pre-trained model parts. Currently, this relies on huggingface transformers' from_pretrained code.
|
|
|
+If necessary, one can rewrite this to implement a different behavior, such as:
|
|
|
+ - loading files from a local data source (e.g. S3)
|
|
|
+ - load files via BitTorrent ( https://pypi.org/project/libtorrent/ ) or IPFS( https://docs.ipfs.io/how-to )
|
|
|
+ - fetch the weights over IPoAC, using a fleet of trained pigeons ( http://www.faqs.org/rfcs/rfc1149.html )
|
|
|
+
|
|
|
+"""
|
|
|
+from typing import Optional, OrderedDict
|
|
|
+
|
|
|
+import torch
|
|
|
+from hivemind.utils.logging import use_hivemind_log_handler, get_logger
|
|
|
+from transformers.utils.hub import hf_bucket_url, cached_path
|
|
|
+
|
|
|
+from src.bloom import BloomForCausalLM, DistributedBloomConfig, BloomBlock
|
|
|
+from transformers.modeling_utils import WEIGHTS_NAME
|
|
|
+
|
|
|
+use_hivemind_log_handler("in_root_logger")
|
|
|
+logger = get_logger(__file__)
|
|
|
+
|
|
|
+CLIENT_BRANCH = "client"
|
|
|
+BLOCK_BRANCH_PREFIX = "block_"
|
|
|
+USER_AGENT = {'file_type': 'model', 'framework': 'pytorch', 'from_auto_class': False}
|
|
|
+cls = BloomForCausalLM
|
|
|
+FORCE_DOWNLOAD = False
|
|
|
+RESUME_DOWNLOAD = False
|
|
|
+LOCAL_FILES_ONLY = False
|
|
|
+
|
|
|
+
|
|
|
+def load_pretrained_block(
|
|
|
+ converted_model_name_or_path: str, block_index: int, config: Optional[DistributedBloomConfig] = None):
|
|
|
+ """Load one BloomBlock from a converted model. See convert_model.py (or README.md) on how to convert it."""
|
|
|
+ if config is None:
|
|
|
+ config = DistributedBloomConfig.from_pretrained(converted_model_name_or_path)
|
|
|
+ block = BloomBlock(config, layer_number=block_index)
|
|
|
+ state_dict = _load_state_dict(converted_model_name_or_path, block_index)
|
|
|
+ with torch.no_grad():
|
|
|
+ for name, param in block.named_parameters():
|
|
|
+ assert name in state_dict, f"{name} not in state dict"
|
|
|
+ param.data = param.data.to(state_dict[name].dtype)
|
|
|
+ report = block.load_state_dict(state_dict, strict=True)
|
|
|
+ logger.info(f"Loaded {converted_model_name_or_path} block {block_index}, {report}")
|
|
|
+ return block
|
|
|
+
|
|
|
+
|
|
|
+def _load_state_dict(
|
|
|
+ pretrained_model_name_or_path: str, block_index: Optional[int] = None) -> OrderedDict[str, torch.Tensor]:
|
|
|
+ revision = BLOCK_BRANCH_PREFIX + str(block_index) if block_index is not None else CLIENT_BRANCH
|
|
|
+ archive_file = hf_bucket_url(pretrained_model_name_or_path, filename=WEIGHTS_NAME, revision=revision, mirror=None)
|
|
|
+
|
|
|
+ # Load from URL or cache if already cached
|
|
|
+ resolved_archive_file = cached_path(
|
|
|
+ archive_file,
|
|
|
+ cache_dir=None,
|
|
|
+ force_download=FORCE_DOWNLOAD,
|
|
|
+ proxies=None,
|
|
|
+ resume_download=RESUME_DOWNLOAD,
|
|
|
+ local_files_only=LOCAL_FILES_ONLY,
|
|
|
+ use_auth_token=True,
|
|
|
+ user_agent=USER_AGENT,
|
|
|
+ )
|
|
|
+ state_dict = torch.load(resolved_archive_file, map_location='cpu')
|
|
|
+ return state_dict
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|