|
@@ -9,11 +9,12 @@ Based on: https://github.com/TimDettmers/bitsandbytes/blob/main/csrc/kernels.cu#
|
|
|
Exact match tests: see $REPO/tests/test_linear8bitlt.py
|
|
|
"""
|
|
|
import dataclasses
|
|
|
+import warnings
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
import bitsandbytes.functional as F
|
|
|
import torch
|
|
|
-from bitsandbytes.autograd._functions import MatMul8bitLt, MatmulLtState
|
|
|
+from bitsandbytes.autograd._functions import MatMul8bitLt, MatmulLtState, GlobalOutlierPooler, prod
|
|
|
from bitsandbytes.nn import Linear8bitLt
|
|
|
|
|
|
|
|
@@ -88,7 +89,7 @@ class CustomLinear8bitLt(Linear8bitLt):
|
|
|
|
|
|
out = custom_matmul8bitlt(x, self.weight, bias=self.bias, state=self.state)
|
|
|
if not self.state.has_fp16_weights:
|
|
|
- if self.state.CB is not None:
|
|
|
+ if self.state.CB is not None and self.state.CxB is not None:
|
|
|
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
|
|
# we no longer need the row-major weight
|
|
|
del self.state.CB
|
|
@@ -99,6 +100,7 @@ class CustomLinear8bitLt(Linear8bitLt):
|
|
|
@dataclasses.dataclass(init=True)
|
|
|
class CustomMatmulLtState(MatmulLtState):
|
|
|
tile_indices: Optional[torch.Tensor] = None
|
|
|
+ force_no_igemmlt: bool = False
|
|
|
|
|
|
def get_tile_size(self):
|
|
|
assert self.formatB in (
|
|
@@ -123,9 +125,166 @@ def custom_matmul8bitlt(
|
|
|
|
|
|
|
|
|
class CustomMatMul8bitLt(MatMul8bitLt):
|
|
|
- # forward is the same as in inference-only CxB
|
|
|
+ # forward is the same, but we added the fallback for pre-turing GPUs
|
|
|
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
|
|
|
|
|
|
+ @staticmethod
|
|
|
+ def forward(ctx, A, B, out=None, bias=None, state=CustomMatmulLtState):
|
|
|
+ using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt
|
|
|
+ # default to pytorch behavior if inputs are empty
|
|
|
+ ctx.is_empty = False
|
|
|
+ if prod(A.shape) == 0:
|
|
|
+ ctx.is_empty = True
|
|
|
+ ctx.A = A
|
|
|
+ ctx.B = B
|
|
|
+ ctx.bias = bias
|
|
|
+ if A.shape[-1] == B.shape[0]:
|
|
|
+ return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device)
|
|
|
+ else:
|
|
|
+ return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device)
|
|
|
+
|
|
|
+ # 1. Quantize A
|
|
|
+ # 2. Quantize B
|
|
|
+ # 3. Matmul
|
|
|
+ # 4. Mixed-precision decomposition matmul
|
|
|
+ # 5. Save state
|
|
|
+ formatB = state.formatB
|
|
|
+ input_shape = A.shape
|
|
|
+ if state.outlier_pool is None:
|
|
|
+ state.outlier_pool = GlobalOutlierPooler.get_instance()
|
|
|
+
|
|
|
+ # Cast A to fp16
|
|
|
+ if A.dtype != torch.float16:
|
|
|
+ warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
|
|
|
+
|
|
|
+ # 1. Quantize A
|
|
|
+ if len(A.shape) == 3:
|
|
|
+ A = A.view(-1, A.shape[-1]).contiguous()
|
|
|
+ CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(
|
|
|
+ A.to(torch.float16), threshold=state.threshold
|
|
|
+ )
|
|
|
+
|
|
|
+ if state.threshold > 0.0 and coo_tensorA is not None:
|
|
|
+ if state.has_fp16_weights:
|
|
|
+ idx = torch.unique(coo_tensorA.colidx).long()
|
|
|
+ CA[:, idx] = 0
|
|
|
+ CAt[:, idx] = 0
|
|
|
+ subA = A[:, idx]
|
|
|
+ state.subB = B[:, idx].t().contiguous()
|
|
|
+ state.idx = idx
|
|
|
+ else:
|
|
|
+ if state.CxB is None and using_igemmlt:
|
|
|
+ # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
|
|
|
+ # we also need to convert it to the turing/ampere format
|
|
|
+ state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
|
|
+ else:
|
|
|
+ if not state.has_fp16_weights and state.CxB is None and using_igemmlt:
|
|
|
+ state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
|
|
+ subA = None
|
|
|
+
|
|
|
+ # 2. Quantize B
|
|
|
+ if state.has_fp16_weights:
|
|
|
+ has_grad = True if (getattr(B, "grad", None) is not None) else False
|
|
|
+ is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
|
|
|
+ if is_transposed:
|
|
|
+ B = B.contiguous()
|
|
|
+
|
|
|
+ if (state.is_training and not has_grad) or state.CxB is None:
|
|
|
+ state.reset_grads()
|
|
|
+ (
|
|
|
+ CB,
|
|
|
+ state.CBt,
|
|
|
+ state.SCB,
|
|
|
+ state.SCBt,
|
|
|
+ coo_tensorB,
|
|
|
+ ) = F.double_quant(B.to(torch.float16))
|
|
|
+ if using_igemmlt:
|
|
|
+ state.CxB, state.SB = F.transform(CB, to_order=formatB)
|
|
|
+ else:
|
|
|
+ state.CB = CB
|
|
|
+ else:
|
|
|
+ has_grad = False
|
|
|
+
|
|
|
+ if coo_tensorA is not None and not state.has_fp16_weights:
|
|
|
+ # extract outliers
|
|
|
+
|
|
|
+ outlier_idx = torch.unique(coo_tensorA.colidx)
|
|
|
+ state.idx = outlier_idx
|
|
|
+ # state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
|
|
|
+ # if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
|
|
|
+ # # do not use pool for 2nd FFN layer
|
|
|
+ # state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
|
|
+ # else:
|
|
|
+ # state.idx = outlier_idx
|
|
|
+ if state.CxB is not None:
|
|
|
+ outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
|
|
|
+ else:
|
|
|
+ outliers = state.CB[:, state.idx.long()].clone()
|
|
|
+
|
|
|
+ state.subB = (
|
|
|
+ (outliers * state.SCB.view(-1, 1) / 127.0)
|
|
|
+ .t()
|
|
|
+ .contiguous()
|
|
|
+ .to(A.dtype)
|
|
|
+ )
|
|
|
+ CA[:, state.idx.long()] = 0
|
|
|
+ CAt[:, state.idx.long()] = 0
|
|
|
+ subA = A[:, state.idx.long()]
|
|
|
+
|
|
|
+ shapeB = state.SB[0] if state.SB else B.shape
|
|
|
+
|
|
|
+ if len(input_shape) == 3:
|
|
|
+ output_shape = (input_shape[0], input_shape[1], shapeB[0])
|
|
|
+ else:
|
|
|
+ output_shape = (input_shape[0], shapeB[0])
|
|
|
+
|
|
|
+ # 3. Matmul
|
|
|
+ if using_igemmlt:
|
|
|
+ C32A, SA = F.transform(CA, "col32")
|
|
|
+ out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
|
|
|
+ if bias is None or bias.dtype == torch.float16:
|
|
|
+ output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
|
|
|
+ output = output.to(A.dtype)
|
|
|
+ else: # apply bias separately
|
|
|
+ output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
|
|
|
+ output = output.to(A.dtype).add_(bias)
|
|
|
+
|
|
|
+ else:
|
|
|
+ A_wo_outliers = A.clone()
|
|
|
+ if state.idx is not None:
|
|
|
+ A_wo_outliers[:, state.idx.long()] = 0
|
|
|
+ output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype))
|
|
|
+ output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0))
|
|
|
+ if bias is not None:
|
|
|
+ output = output.add_(bias)
|
|
|
+
|
|
|
+ # we apply the fused bias here
|
|
|
+
|
|
|
+
|
|
|
+ # 4. Mixed-precision decomposition matmul
|
|
|
+ if coo_tensorA is not None and subA is not None:
|
|
|
+ output += torch.matmul(subA, state.subB)
|
|
|
+
|
|
|
+ # 5. Save state
|
|
|
+ ctx.state = state
|
|
|
+
|
|
|
+ ctx.formatB = formatB
|
|
|
+ ctx.grad_shape = input_shape
|
|
|
+ ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype
|
|
|
+
|
|
|
+ if any(ctx.needs_input_grad[:2]):
|
|
|
+ ctx.tensors = (CAt, subA)
|
|
|
+ ctx.tensor_states = (SCAt, state.idx)
|
|
|
+ else:
|
|
|
+ ctx.tensors = [None, None]
|
|
|
+ ctx.tensor_states = (None, None)
|
|
|
+ ctx.save_for_backward(None, None)
|
|
|
+
|
|
|
+
|
|
|
+ clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
|
|
|
+ return clone_func(output.view(output_shape))
|
|
|
+
|
|
|
+
|
|
|
@staticmethod
|
|
|
def backward(ctx, grad_output):
|
|
|
if ctx.is_empty:
|