Bläddra i källkod

Remove duplicate `src`

Aleksandr Borzunov 2 år sedan
förälder
incheckning
86efab1fed
33 ändrade filer med 0 tillägg och 5038 borttagningar
  1. 0 6
      src/petals/src/__init__.py
  2. 0 2
      src/petals/src/bloom/__init__.py
  3. 0 255
      src/petals/src/bloom/block.py
  4. 0 86
      src/petals/src/bloom/from_pretrained.py
  5. 0 596
      src/petals/src/bloom/model.py
  6. 0 246
      src/petals/src/bloom/ops.py
  7. 0 5
      src/petals/src/client/__init__.py
  8. 0 330
      src/petals/src/client/inference_session.py
  9. 0 154
      src/petals/src/client/remote_forward_backward.py
  10. 0 328
      src/petals/src/client/remote_generation.py
  11. 0 198
      src/petals/src/client/remote_model.py
  12. 0 102
      src/petals/src/client/remote_sequential.py
  13. 0 167
      src/petals/src/client/sequence_manager.py
  14. 0 260
      src/petals/src/client/sequential_autograd.py
  15. 0 14
      src/petals/src/client/spending_policy.py
  16. 0 8
      src/petals/src/constants.py
  17. 0 41
      src/petals/src/data_structures.py
  18. 0 180
      src/petals/src/dht_utils.py
  19. 0 0
      src/petals/src/server/__init__.py
  20. 0 85
      src/petals/src/server/backend.py
  21. 0 115
      src/petals/src/server/block_selection.py
  22. 0 148
      src/petals/src/server/cache.py
  23. 0 470
      src/petals/src/server/handler.py
  24. 0 198
      src/petals/src/server/runtime.py
  25. 0 499
      src/petals/src/server/server.py
  26. 0 178
      src/petals/src/server/task_pool.py
  27. 0 20
      src/petals/src/server/task_prioritizer.py
  28. 0 127
      src/petals/src/server/throughput.py
  29. 0 0
      src/petals/src/utils/__init__.py
  30. 0 41
      src/petals/src/utils/convert_8bit.py
  31. 0 121
      src/petals/src/utils/generation_algorithms.py
  32. 0 51
      src/petals/src/utils/generation_constraints.py
  33. 0 7
      src/petals/src/utils/misc.py

+ 0 - 6
src/petals/src/__init__.py

@@ -1,6 +0,0 @@
-from petals.bloom import *
-from petals.client import *
-from petals.dht_utils import declare_active_modules, get_remote_module
-
-project_name = "bloomd"
-__version__ = "0.2"

+ 0 - 2
src/petals/src/bloom/__init__.py

@@ -1,2 +0,0 @@
-from petals.bloom.block import BloomBlock
-from petals.bloom.model import BloomConfig, BloomForCausalLM, BloomModel, BloomPreTrainedModel

+ 0 - 255
src/petals/src/bloom/block.py

@@ -1,255 +0,0 @@
-"""
-Bloom intermediate layer
-Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
-See commit history for authorship.
-"""
-import math
-
-import torch
-import torch.nn as nn
-import torch.nn.quantized.dynamic.modules.linear
-
-from petals.bloom.ops import (
-    BloomGelu,
-    BloomScaledSoftmax,
-    attention_mask_func,
-    build_alibi_tensor,
-    dropout_add,
-    pre_process_alibi_for_pad,
-    split_tensor_along_last_dim,
-)
-
-
-class BloomAttention(nn.Module):
-    def __init__(self, config, layer_number=None):
-        super().__init__()
-
-        self.hidden_size = config.hidden_size
-        self.num_heads = config.n_head
-        self.head_dim = self.hidden_size // self.num_heads
-        self.split_size = self.hidden_size
-        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
-        self.masked_softmax_fusion = config.masked_softmax_fusion
-        self.hidden_dropout = config.hidden_dropout
-
-        if self.head_dim * self.num_heads != self.hidden_size:
-            raise ValueError(
-                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
-                f" {self.num_heads})."
-            )
-
-        # Layer-wise attention scaling
-        self.layer_number = max(1, layer_number)
-        self.norm_factor = math.sqrt(self.head_dim) * self.layer_number
-
-        # Scaled Softmax
-        self.scale_mask_softmax = BloomScaledSoftmax(
-            self.masked_softmax_fusion,
-            attention_mask_func,
-            self.attention_softmax_in_fp32,
-            self.layer_number,
-        )
-
-        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
-        self.dense = nn.Linear(self.hidden_size, self.hidden_size)
-
-        self.attention_dropout = nn.Dropout(config.attention_dropout)
-
-    def forward(
-        self,
-        hidden_states,
-        residual,
-        layer_past=None,
-        attention_mask=None,
-        alibi=None,
-        head_mask=None,
-        use_cache=False,
-        output_attentions=False,
-    ):
-        if alibi is None:
-            current_sequence_length = hidden_states.shape[1] + (0 if layer_past is None else layer_past[0].shape[1])
-            alibi = build_alibi_tensor(
-                current_sequence_length, n_head=self.num_heads, dtype=hidden_states.dtype, device=hidden_states.device
-            )
-
-        # hidden_states: [batch_size, seq_length, hidden_size]
-        # apply preprocessing if the input is padded
-        if attention_mask is not None:
-            alibi = pre_process_alibi_for_pad(alibi, attention_mask)
-        # otherwise repeat alibi tensor with the batch size
-        else:
-            alibi = alibi.repeat(hidden_states.shape[0], 1, 1)
-
-        mixed_x_layer = self.query_key_value(hidden_states)
-
-        # [batch_size, seq_length, 3 x hidden_size] --> [batch_size, seq_length, num_heads, 3 x head_dim]
-        new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_heads, 3 * self.head_dim)
-        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
-
-        # [batch_size, seq_length, num_heads, 3 x head_dim] --> 3  [batch_size, seq_length, num_heads, head_dim]
-        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
-
-        if layer_past is not None:
-            past_key, past_value = layer_past
-            key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=1)
-            value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=1)
-
-        if use_cache is True:
-            present = (key_layer, value_layer)
-        else:
-            present = None
-
-        # [batch_size, head_dim, q_length, k_length]
-        output_size = (query_layer.size(0), query_layer.size(2), query_layer.size(1), key_layer.size(1))
-
-        # [batch_size, q_length, num_heads, head_dim] -> [q_length, batch_size * num_heads, head_dim]
-        query_layer = query_layer.transpose(1, 0).reshape(output_size[2], output_size[0] * output_size[1], -1)
-
-        # [batch_size, k_length, num_heads, head_dim] -> [k_length, batch_size * num_heads, head_dim]
-        key_layer = key_layer.transpose(1, 0).reshape(output_size[3], output_size[0] * output_size[1], -1)
-
-        # Raw attention scores. [batch_size * num_heads, q_length, k_length]
-        beta = 1.0 / self.layer_number
-
-        matmul_result = torch.baddbmm(
-            alibi,
-            query_layer.transpose(1, 0),
-            key_layer.transpose(1, 0).transpose(1, 2),
-            beta=beta,
-            alpha=(1.0 / self.norm_factor),
-        )
-
-        # change view to [batch_size, num_heads, q_length, k_length]
-        attention_scores = matmul_result.view(*output_size)
-
-        # attention scores and attention mask [b, np, sq, sk]
-        max_positions = max(attention_scores.shape[-1], attention_scores.shape[-2])
-        attention_probs = self.scale_mask_softmax(attention_scores, attention_mask, max_positions).to(value_layer.dtype)
-        attention_probs = self.attention_dropout(attention_probs)
-
-        if head_mask is not None:
-            attention_probs = attention_probs * head_mask
-
-        # context layer shape: [batch_size, num_heads, q_length, head_dim]
-        output_size = (value_layer.size(0), value_layer.size(2), query_layer.size(0), value_layer.size(3))
-
-        # change view [k_length, batch_size x num_heads, head_dim]
-        value_layer = value_layer.transpose(1, 0).reshape(value_layer.size(1), output_size[0] * output_size[1], -1)
-
-        # change view [batch_size x num_heads, q_length, k_length]
-        attention_probs_reshaped = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
-
-        # matmul: [batch_size * num_heads, q_length, head_dim]
-        context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
-
-        # change view [batch_size, num_heads, q_length, head_dim]
-        context_layer = context_layer.view(*output_size)
-
-        # [batchs_size, num_heads, q_length, head_dim] --> [q_length, batch_size, num_heads, head_dim]
-        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
-
-        # [q_length, batch_size, num_heads, head_dim] --> [q_length, batch_size, hidden_size]
-        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
-
-        context_layer = context_layer.view(*new_context_layer_shape)
-
-        # Output. [q_length, batch_size, hidden_size]
-
-        # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
-        output_tensor = self.dense(context_layer)
-        output = output_tensor.transpose(1, 0)
-
-        output = dropout_add(output, residual, self.hidden_dropout, self.training)
-
-        outputs = (output, present)
-        if output_attentions:
-            outputs += (attention_probs,)
-
-        return outputs
-
-
-class BloomMLP(nn.Module):
-    def __init__(self, config):
-        super().__init__()
-        self.hidden_size = config.hidden_size
-        self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size)
-        self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size)
-        self.hidden_dropout = config.hidden_dropout
-        self.gelu_impl = BloomGelu()
-
-    def forward(self, hidden_states, residual):
-        hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
-        intermediate_output = self.dense_4h_to_h(hidden_states)
-        output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
-        return output
-
-
-class BloomBlock(nn.Module):
-    def __init__(self, config, layer_number=None):
-        super().__init__()
-        self.hidden_size = config.hidden_size
-
-        self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
-        self.n_head = config.n_head
-        self.self_attention = BloomAttention(config, layer_number=layer_number)
-        self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
-
-        self.mlp = BloomMLP(config)
-
-        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
-        self.hidden_dropout = config.hidden_dropout
-
-    def forward(
-        self,
-        hidden_states,
-        layer_past=None,
-        attention_mask=None,
-        head_mask=None,
-        use_cache=False,
-        output_attentions=False,
-        alibi=None,
-    ):
-        # hidden_states: [batch_size, seq_length, hidden_size]
-
-        # Layer norm at the beginning of the transformer layer.
-        layernorm_output = self.input_layernorm(hidden_states)
-
-        # Layer norm post the self attention.
-        if self.apply_residual_connection_post_layernorm:
-            residual = layernorm_output
-        else:
-            residual = hidden_states
-
-        # Self attention.
-        attn_outputs = self.self_attention(
-            layernorm_output,
-            residual,
-            layer_past=layer_past,
-            attention_mask=attention_mask,
-            alibi=alibi,
-            head_mask=head_mask,
-            use_cache=use_cache,
-            output_attentions=output_attentions,
-        )
-
-        attention_output = attn_outputs[0]
-
-        outputs = attn_outputs[1:]
-
-        layernorm_output = self.post_attention_layernorm(attention_output)
-
-        # Get residual
-        if self.apply_residual_connection_post_layernorm:
-            residual = layernorm_output
-        else:
-            residual = attention_output
-
-        # MLP.
-        output = self.mlp(layernorm_output, residual)
-
-        if use_cache:
-            outputs = (output,) + outputs
-        else:
-            outputs = (output,) + outputs[1:]
-
-        return outputs  # hidden_states, present, attentions

+ 0 - 86
src/petals/src/bloom/from_pretrained.py

@@ -1,86 +0,0 @@
-"""
-Utils for fetching pretrained model parts. Currently, this relies on huggingface transformers' from_pretrained code.
-If necessary, one can rewrite this to implement a different behavior, such as:
- - loading files from a local data source (e.g. S3)
- - load files via BitTorrent ( https://pypi.org/project/libtorrent/ ) or IPFS( https://docs.ipfs.io/how-to )
- - fetch the weights over IPoAC, using a fleet of trained pigeons ( http://www.faqs.org/rfcs/rfc1149.html )
-
-"""
-from __future__ import annotations
-
-from typing import Optional, OrderedDict, Union
-
-import torch
-from hivemind.utils.logging import get_logger, use_hivemind_log_handler
-from transformers.modeling_utils import WEIGHTS_NAME
-from transformers.utils.hub import cached_path, hf_bucket_url
-
-from petals.bloom import BloomBlock, BloomConfig
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-CLIENT_BRANCH = "main"
-BLOCK_BRANCH_PREFIX = "block_"
-USER_AGENT = {"file_type": "model", "framework": "pytorch", "from_auto_class": False}
-FORCE_DOWNLOAD = False
-RESUME_DOWNLOAD = False
-LOCAL_FILES_ONLY = False
-
-
-def load_pretrained_block(
-    converted_model_name_or_path: str,
-    block_index: int,
-    config: Optional[BloomConfig] = None,
-    torch_dtype: Union[torch.dtype, str] = "auto",
-    use_auth_token: Optional[str] = None,
-    cache_dir: Optional[str] = None,
-) -> BloomBlock:
-    """Load one BloomBlock from a converted model. See convert_model.py (or README.md) on how to convert it."""
-    if config is None:
-        config = BloomConfig.from_pretrained(converted_model_name_or_path, use_auth_token=use_auth_token)
-    block = BloomBlock(config, layer_number=block_index)
-    state_dict = _load_state_dict(
-        converted_model_name_or_path, block_index, use_auth_token=use_auth_token, cache_dir=cache_dir
-    )
-    block.load_state_dict(state_dict)
-
-    if torch_dtype == "auto":
-        with torch.no_grad():
-            for name, param in block.named_parameters():
-                assert name in state_dict, f"{name} not in state dict"
-                param.data = param.data.to(state_dict[name].dtype)
-    else:
-        assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
-        block = block.to(dtype=torch_dtype)
-
-    report = block.load_state_dict(state_dict, strict=True)
-    logger.info(f"Loaded {converted_model_name_or_path} block {block_index}, {report}")
-    return block
-
-
-def _load_state_dict(
-    pretrained_model_name_or_path: str,
-    block_index: Optional[int] = None,
-    use_auth_token: Optional[str] = None,
-    cache_dir: Optional[str] = None,
-) -> OrderedDict[str, torch.Tensor]:
-    revision = BLOCK_BRANCH_PREFIX + str(block_index) if block_index is not None else CLIENT_BRANCH
-    archive_file = hf_bucket_url(pretrained_model_name_or_path, filename=WEIGHTS_NAME, revision=revision, mirror=None)
-
-    # Load from URL or cache if already cached
-    resolved_archive_file = cached_path(
-        archive_file,
-        cache_dir=cache_dir,
-        force_download=FORCE_DOWNLOAD,
-        proxies=None,
-        resume_download=RESUME_DOWNLOAD,
-        local_files_only=LOCAL_FILES_ONLY,
-        use_auth_token=use_auth_token,
-        user_agent=USER_AGENT,
-    )
-    state_dict = torch.load(resolved_archive_file, map_location="cpu")
-    return state_dict
-
-
-DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto")

+ 0 - 596
src/petals/src/bloom/model.py

@@ -1,596 +0,0 @@
-"""
-PyTorch BLOOM model that implements several memory-efficient modes.
-Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
-See commit history for authorship.
-"""
-from typing import Optional, Tuple, Union
-
-import torch
-import torch.nn.functional as F
-import torch.utils.checkpoint
-from hivemind import use_hivemind_log_handler
-from torch import nn
-from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
-from transformers.file_utils import (
-    add_code_sample_docstrings,
-    add_start_docstrings,
-    add_start_docstrings_to_model_forward,
-)
-from transformers.modeling_outputs import (
-    BaseModelOutputWithPastAndCrossAttentions,
-    CausalLMOutputWithCrossAttentions,
-    SequenceClassifierOutputWithPast,
-)
-from transformers.modeling_utils import PreTrainedModel
-from transformers.models.bloom.configuration_bloom import BloomConfig
-from transformers.models.bloom.modeling_bloom import BloomPreTrainedModel
-from transformers.utils import logging
-
-from petals.bloom.block import BloomBlock
-
-use_hivemind_log_handler("in_root_logger")
-logger = logging.get_logger(__file__)
-
-_CHECKPOINT_FOR_DOC = "bigscience/Bloom"
-_CONFIG_FOR_DOC = "BloomConfig"
-_TOKENIZER_FOR_DOC = "BloomTokenizer"
-
-
-BLOOM_START_DOCSTRING = r"""
-
-    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
-    library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
-
-    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
-    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
-    and behavior.
-
-    Parameters:
-        config ([`MemoryEfficientBloomConfig`]): Model configuration class with all the parameters of the model.
-            Initializing with a config file does not load the weights associated with the model, only the
-            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
-"""
-
-BLOOM_INPUTS_DOCSTRING = r"""
-    Args:
-        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
-            `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
-            `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
-            sequence tokens in the vocabulary.
-
-            If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
-            `input_ids`.
-
-            Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
-            [`PreTrainedTokenizer.__call__`] for details.
-
-            [What are input IDs?](../glossary#input-ids)
-        past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
-            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
-            `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
-            their past given to this model should not be passed as `input_ids` as they have already been computed.
-        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
-            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
-
-            - 1 for tokens that are **not masked**,
-            - 0 for tokens that are **masked**.
-
-            [What are attention masks?](../glossary#attention-mask)
-        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
-            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
-            config.max_position_embeddings - 1]`.
-
-            [What are position IDs?](../glossary#position-ids)
-        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
-            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
-
-            - 1 indicates the head is **not masked**,
-            - 0 indicates the head is **masked**.
-
-        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
-            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
-            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
-            model's internal embedding lookup matrix.
-
-            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
-            `past_key_values`).
-        use_cache (`bool`, *optional*):
-            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
-            `past_key_values`).
-        output_attentions (`bool`, *optional*):
-            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
-            tensors for more detail.
-        output_hidden_states (`bool`, *optional*):
-            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
-            more detail.
-        return_dict (`bool`, *optional*):
-            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
-"""
-
-
-class _BloomPreTrainedModelWithModifiedDefaults(BloomPreTrainedModel):
-    @classmethod
-    def from_pretrained(cls, *args, low_cpu_mem_usage: Optional[bool] = None, **kwargs):
-        if low_cpu_mem_usage is None:
-            low_cpu_mem_usage = True
-        return super().from_pretrained(*args, low_cpu_mem_usage=low_cpu_mem_usage, **kwargs)
-
-    from_pretrained.__doc__ = BloomPreTrainedModel.from_pretrained.__doc__.replace(
-        "low_cpu_mem_usage(`bool`, *optional*)",
-        "low_cpu_mem_usage(`bool`, *optional*, defaults to `True` in Petals)",
-    )
-
-
-@add_start_docstrings(
-    "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
-    BLOOM_START_DOCSTRING,
-)
-class BloomModel(_BloomPreTrainedModelWithModifiedDefaults):
-    def __init__(self, config):
-        super().__init__(config)
-        assert not config.slow_but_exact, "slow_but_exact mode was removed for code simplicity"
-
-        self.embed_dim = config.hidden_size
-        self.n_head = config.n_head
-
-        # Embedding + LN Embedding
-        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
-        self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
-
-        # Transformer blocks
-        self.h = nn.ModuleList([BloomBlock(config, layer_number=i) for i in range(config.num_hidden_layers)])
-
-        # Final Layer Norm
-        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
-
-        self.gradient_checkpointing = False
-
-        # Initialize weights and apply final processing
-        self.post_init()
-
-    def get_input_embeddings(self):
-        return self.word_embeddings
-
-    def set_input_embeddings(self, new_embeddings):
-        self.word_embeddings = new_embeddings
-
-    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
-    @add_code_sample_docstrings(
-        processor_class=_TOKENIZER_FOR_DOC,
-        checkpoint=_CHECKPOINT_FOR_DOC,
-        output_type=BaseModelOutputWithPastAndCrossAttentions,
-        config_class=_CONFIG_FOR_DOC,
-    )
-    def forward(
-        self,
-        input_ids=None,
-        past_key_values=None,
-        attention_mask=None,
-        position_ids=None,
-        head_mask=None,
-        inputs_embeds=None,
-        use_cache=None,
-        output_attentions=None,
-        output_hidden_states=None,
-        return_dict=None,
-    ):
-        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
-        output_hidden_states = (
-            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
-        )
-        use_cache = use_cache if use_cache is not None else self.config.use_cache
-        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
-        if input_ids is not None and inputs_embeds is not None:
-            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
-        if position_ids is not None:
-            logger.warning("position_ids are ignored in this bloom implementation")
-        elif input_ids is not None:
-            input_shape = input_ids.size()
-            input_ids = input_ids.view(-1, input_shape[-1])
-        elif inputs_embeds is not None:
-            input_shape = inputs_embeds.size()[:-1]
-        else:
-            raise ValueError("You have to specify either input_ids or inputs_embeds")
-
-        if past_key_values is None:
-            past_key_values = tuple([None] * len(self.h))
-
-        # Prepare head mask if needed
-        # 1.0 in head_mask indicate we keep the head
-        # attention_probs has shape bsz x n_head x N x N
-        # head_mask has shape n_layer x batch x n_head x N x N
-        head_mask = self.get_head_mask(head_mask, self.config.n_layer)
-
-        if inputs_embeds is None:
-            inputs_embeds = self.word_embeddings(input_ids)
-
-        # Note: it supports only float32 or bfloat16 inputs
-        hidden_states = self.word_embeddings_layernorm(inputs_embeds)
-
-        output_shape = input_shape + (hidden_states.size(-1),)
-
-        presents = () if use_cache else None
-        all_self_attentions = () if output_attentions else None
-        all_hidden_states = () if output_hidden_states else None
-
-        # Compute alibi tensor: check build_alibi_tensor documentation
-        current_sequence_length = hidden_states.shape[1]
-        if past_key_values and past_key_values[0]:
-            current_sequence_length += past_key_values[0][0].shape[1]
-
-        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
-
-            if output_hidden_states:
-                all_hidden_states = all_hidden_states + (hidden_states,)
-
-            if self.gradient_checkpointing and self.training:
-
-                if use_cache:
-                    logger.warning(
-                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
-                    )
-                    use_cache = False
-
-                def create_custom_forward(module):
-                    def custom_forward(*inputs):
-                        # None for past_key_value
-                        return module(*inputs, use_cache, output_attentions, alibi=None)
-
-                    return custom_forward
-
-                outputs = torch.utils.checkpoint.checkpoint(
-                    create_custom_forward(block),
-                    hidden_states,
-                    None,
-                    attention_mask,
-                    head_mask[i],
-                )
-            else:
-                outputs = block(
-                    hidden_states,
-                    layer_past=layer_past,
-                    attention_mask=attention_mask,
-                    head_mask=head_mask[i],
-                    use_cache=use_cache,
-                    output_attentions=output_attentions,
-                    alibi=None,
-                )
-
-            hidden_states = outputs[0]
-            if use_cache is True:
-                presents = presents + (outputs[1],)
-
-            if output_attentions:
-                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
-
-        # Add last hidden state
-        hidden_states = self.ln_f(hidden_states)
-
-        if output_hidden_states:
-            all_hidden_states = all_hidden_states + (hidden_states,)
-
-        hidden_states = hidden_states.view(output_shape)
-
-        if not return_dict:
-            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
-
-        return BaseModelOutputWithPastAndCrossAttentions(
-            last_hidden_state=hidden_states,
-            past_key_values=presents,
-            hidden_states=all_hidden_states,
-            attentions=all_self_attentions,
-        )
-
-
-@add_start_docstrings(
-    """
-    The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
-    embeddings).
-    """,
-    BLOOM_START_DOCSTRING,
-)
-class BloomForCausalLM(_BloomPreTrainedModelWithModifiedDefaults):
-    _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
-
-    def __init__(self, config):
-        super().__init__(config)
-        self.transformer = BloomModel(config)
-        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
-
-        # Initialize weights and apply final processing
-        self.post_init()
-
-    def get_output_embeddings(self):
-        return self.lm_head
-
-    def set_output_embeddings(self, new_embeddings):
-        self.lm_head = new_embeddings
-
-    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
-        # only last token for inputs_ids if past is defined in kwargs
-        if past:
-            input_ids = input_ids[:, -1].unsqueeze(-1)
-
-        attention_mask = kwargs.get("attention_mask", None)
-        position_ids = kwargs.get("position_ids", None)
-
-        if attention_mask is not None and position_ids is None:
-            # create position_ids on the fly for batch generation
-            position_ids = attention_mask.long().cumsum(-1) - 1
-            position_ids.masked_fill_(attention_mask == 0, 1)
-            if past:
-                position_ids = position_ids[:, -1].unsqueeze(-1)
-        else:
-            position_ids = None
-        return {
-            "input_ids": input_ids,
-            "past_key_values": past,
-            "use_cache": kwargs.get("use_cache"),
-            "position_ids": position_ids,
-            "attention_mask": attention_mask,
-        }
-
-    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
-    @add_code_sample_docstrings(
-        processor_class=_TOKENIZER_FOR_DOC,
-        checkpoint=_CHECKPOINT_FOR_DOC,
-        output_type=CausalLMOutputWithCrossAttentions,
-        config_class=_CONFIG_FOR_DOC,
-    )
-    def forward(
-        self,
-        input_ids=None,
-        past_key_values=None,
-        attention_mask=None,
-        position_ids=None,
-        head_mask=None,
-        inputs_embeds=None,
-        labels=None,
-        use_cache=None,
-        output_attentions=None,
-        output_hidden_states=None,
-        return_dict=None,
-    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
-        r"""
-        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
-            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
-            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
-            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
-        """
-        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
-        transformer_outputs = self.transformer(
-            input_ids,
-            past_key_values=past_key_values,
-            attention_mask=attention_mask,
-            position_ids=position_ids,
-            head_mask=head_mask,
-            inputs_embeds=inputs_embeds,
-            use_cache=use_cache,
-            output_attentions=output_attentions,
-            output_hidden_states=output_hidden_states,
-            return_dict=return_dict,
-        )
-        hidden_states = transformer_outputs[0]
-
-        lm_logits = self.lm_head(hidden_states)
-
-        loss = None
-        if labels is not None:
-            # Shift so that tokens < n predict n
-            shift_logits = lm_logits[..., :-1, :].contiguous()
-            shift_labels = labels[..., 1:].contiguous()
-            # Flatten the tokens
-            loss_fct = CrossEntropyLoss()
-            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
-
-        if not return_dict:
-            output = (lm_logits,) + transformer_outputs[1:]
-            return ((loss,) + output) if loss is not None else output
-
-        return CausalLMOutputWithCrossAttentions(
-            loss=loss,
-            logits=lm_logits,
-            past_key_values=transformer_outputs.past_key_values,
-            hidden_states=transformer_outputs.hidden_states,
-            attentions=transformer_outputs.attentions,
-        )
-
-    @staticmethod
-    def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
-        """
-        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
-        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
-        beam_idx at every generation step.
-        """
-        return tuple(
-            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
-            for layer_past in past
-        )
-
-
-@add_start_docstrings(
-    """
-    The modified language modeling head which does not create extra tensor for the linear layer with weights tied to the input
-    embeddings. Thus, it reduces initial memory consumption which might be crucial for large dictionaries.
-    In addition, it provides an effcient way to deal with half-precision word embeddings on CPU.
-    """,
-    BLOOM_START_DOCSTRING,
-)
-class LMHead(nn.Module):
-    def __init__(self, config, word_embeddings: nn.Embedding):
-        super().__init__()
-        self.word_embeddings = word_embeddings
-        self.chunk_size = config.chunk_size_for_efficient_fp16_on_cpu
-
-    @property
-    def in_features(self) -> int:
-        return self.word_embeddings.num_embeddings
-
-    @property
-    def out_features(self) -> int:
-        return self.word_embeddings.embedding_dim
-
-    @property
-    def weight(self):
-        return self.word_embeddings.weight
-
-    @property
-    def bias(self):
-        return None
-
-    def forward(self, hidden_states):
-        word_embeddings = self.word_embeddings.weight
-
-        # We use 'chunked_forward' only when embeddings are in half-precision on CPU.
-        if word_embeddings.dtype in [torch.float16, torch.bfloat16] and word_embeddings.device.type == "cpu":
-            lm_logits = self.chunked_forward(hidden_states)
-        else:
-            # Switch dtype in case word_embeddings are fp16/bf16
-            hidden_states = hidden_states.to(word_embeddings.dtype)
-            lm_logits = F.linear(hidden_states, word_embeddings)
-        return lm_logits
-
-    def chunked_forward(self, hidden_states):
-        """Splits word embeddings on chunks and iteratively casts them into fp32 to perform matmul more efficiently on CPU.
-        chunk_size: provides trade-off between efficiency and extra memory consumption.
-        """
-        assert self.chunk_size > 0, "Chunk size for chunked forward must be positive"
-
-        word_embeddings = self.word_embeddings.weight
-        num_embeddings = self.word_embeddings.num_embeddings
-
-        hidden_states = hidden_states.float()
-        output = torch.zeros(*hidden_states.shape[:-1], num_embeddings)
-
-        for i in range(0, num_embeddings, self.chunk_size):
-            chunk = word_embeddings[i : i + self.chunk_size].float()
-            output[..., i : i + self.chunk_size] = F.linear(hidden_states, chunk)
-        return output
-
-
-@add_start_docstrings(
-    """
-    The Bloom Model transformer with a sequence classification head on top (linear layer).
-    [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
-    (e.g. GPT-1) do.
-    Since it does classification on the last token, it requires to know the position of the last token. If a
-    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
-    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
-    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
-    each row of the batch).
-    """,
-    BLOOM_START_DOCSTRING,
-)
-class BloomForSequenceClassification(_BloomPreTrainedModelWithModifiedDefaults):
-    _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
-
-    def __init__(self, config):
-        super().__init__(config)
-        self.num_labels = config.num_labels
-        self.transformer = BloomModel(config)
-        self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
-
-        # Initialize weights and apply final processing
-        self.post_init()
-
-    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
-    @add_code_sample_docstrings(
-        processor_class=_TOKENIZER_FOR_DOC,
-        checkpoint=_CHECKPOINT_FOR_DOC,
-        output_type=SequenceClassifierOutputWithPast,
-        config_class=_CONFIG_FOR_DOC,
-    )
-    def forward(
-        self,
-        input_ids=None,
-        past_key_values=None,
-        attention_mask=None,
-        position_ids=None,
-        head_mask=None,
-        inputs_embeds=None,
-        labels=None,
-        use_cache=None,
-        output_attentions=None,
-        output_hidden_states=None,
-        return_dict=None,
-    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
-        r"""
-        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
-            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
-            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
-            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
-        """
-
-        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
-        transformer_outputs = self.transformer(
-            input_ids,
-            past_key_values=past_key_values,
-            attention_mask=attention_mask,
-            position_ids=position_ids,
-            head_mask=head_mask,
-            inputs_embeds=inputs_embeds,
-            use_cache=use_cache,
-            output_attentions=output_attentions,
-            output_hidden_states=output_hidden_states,
-            return_dict=return_dict,
-        )
-
-        hidden_states = transformer_outputs[0]
-        logits = self.score(hidden_states)
-
-        if input_ids is not None:
-            batch_size = input_ids.shape[0]
-        else:
-            batch_size = inputs_embeds.shape[0]
-
-        if self.config.pad_token_id is None and batch_size != 1:
-            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
-        if self.config.pad_token_id is None:
-            sequence_lengths = -1
-        else:
-            if input_ids is not None:
-                sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
-            else:
-                sequence_lengths = -1
-                logger.warning(
-                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
-                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
-                )
-
-        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
-        loss = None
-        if labels is not None:
-            if self.config.problem_type is None:
-                if self.num_labels == 1:
-                    self.config.problem_type = "regression"
-                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
-                    self.config.problem_type = "single_label_classification"
-                else:
-                    self.config.problem_type = "multi_label_classification"
-
-            if self.config.problem_type == "regression":
-                loss_fct = MSELoss()
-                if self.num_labels == 1:
-                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
-                else:
-                    loss = loss_fct(pooled_logits, labels)
-            elif self.config.problem_type == "single_label_classification":
-                loss_fct = CrossEntropyLoss()
-                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
-            elif self.config.problem_type == "multi_label_classification":
-                loss_fct = BCEWithLogitsLoss()
-                loss = loss_fct(pooled_logits, labels)
-        if not return_dict:
-            output = (pooled_logits,) + transformer_outputs[1:]
-            return ((loss,) + output) if loss is not None else output
-
-        return SequenceClassifierOutputWithPast(
-            loss=loss,
-            logits=pooled_logits,
-            past_key_values=transformer_outputs.past_key_values,
-            hidden_states=transformer_outputs.hidden_states,
-            attentions=transformer_outputs.attentions,
-        )

+ 0 - 246
src/petals/src/bloom/ops.py

@@ -1,246 +0,0 @@
-"""
-Utility operations used in the the BLOOM model
-Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
-See commit history for authorship.
-"""
-import math
-
-import torch
-import torch.autograd
-import torch.nn.functional as F
-from torch import nn
-
-
-def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False):
-    """Split a tensor along its last dimension.
-
-    Args:
-        tensor: ([`torch.tensor`], *required*):
-            input tensor to split
-        num_partitions ([`int`], *required*):
-            number of partitions to split the tensor
-        contiguous_split_chunks ([`bool`], *optional*, default=`False`)::
-            If True, make each chunk contiguous in memory.
-    """
-    # Get the size and dimension.
-    last_dim = tensor.dim() - 1
-    numerator, denominator = tensor.size()[last_dim], num_partitions
-    if not (numerator % denominator == 0):
-        raise ValueError(f"{numerator} is not divisible by {denominator}")
-    last_dim_size = numerator // denominator
-    # Split.
-    tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
-    # Note: torch.split does not create contiguous tensors by default.
-    if contiguous_split_chunks:
-        return tuple(chunk.contiguous() for chunk in tensor_list)
-
-    return tensor_list
-
-
-def attention_mask_func(attention_scores, attention_mask, causal_mask):
-    if attention_mask.dtype == torch.bool:
-        attention_mask_bool = ~attention_mask
-    else:
-        attention_mask_bool = (1 - attention_mask).bool()
-
-    query_length, key_length, n_heads = attention_scores.size(2), attention_scores.size(3), attention_scores.size(1)
-    padded_causal_mask = (
-        attention_mask_bool[:, None, key_length - query_length : key_length, None]
-        + ~causal_mask[:, :, key_length - query_length : key_length, :key_length]
-    ).bool()
-    padded_causal_mask = padded_causal_mask + attention_mask_bool[:, None, None, :key_length].bool()
-    # Make use of floats
-    return (
-        attention_scores.masked_fill_(padded_causal_mask.expand(-1, n_heads, -1, -1), -10000.0),
-        padded_causal_mask,
-    )
-
-
-def build_alibi_tensor(
-    max_seq_len: int, n_head: int, dtype: torch.dtype = torch.bfloat16, device: torch.device = torch.device("cpu")
-) -> torch.Tensor:
-    """
-    Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
-    relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
-    `softmax(l+a) = softmax(l)`. Based on
-    https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
-    Args:
-    Returns tensor shaped (n_head, 1, max_seq_len)
-        max_seq_len: (`int`, *required*):
-            max sequence length
-        n_head: (`int`, *required*):
-            number of heads
-        dtype: (`torch.dtype`, *optional*, default=`torch.bfloat16`):
-            dtype of the output tensor
-        device: (`torch.device`, *optional*, default=`torch.device('cpu')`):
-            device of the output alibi tensor
-    """
-    closest_power_of_2 = 2 ** math.floor(math.log2(n_head))
-    base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
-    powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
-    slopes = torch.pow(base, powers)
-
-    if closest_power_of_2 != n_head:
-        extra_base = torch.tensor(
-            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32
-        )
-        num_remaining_heads = min(closest_power_of_2, n_head - closest_power_of_2)
-        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
-        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
-
-    lengths = torch.arange(max_seq_len, device=device, dtype=torch.int32)
-    return (slopes.view(-1, 1, 1) * lengths.view(1, 1, -1)).to(dtype)
-
-
-def pre_process_alibi_for_pad(alibi: torch.Tensor, attention_mask: torch.Tensor):
-    """
-    Args:
-    Pre-process the alibi tensor for padding.
-        alibi: ([`torch.tensor`], *required*):
-            alibi tensor to pre-process
-        attention_mask: ([`torch.tensor`], *required*):
-            attention mask to pre-process
-    """
-    assert attention_mask.ndim == 2, "mask should be [batch_size, seq_length]"
-    unpadded_indices = torch.relu(attention_mask.cumsum(dim=1) - 1)
-    # ^-- [batch, max_len], values correspond to element indices after removing padding
-    # We shift the alibi tensor + replace all the values where attention_mask==0.0 by 0
-    alibi = alibi.take_along_dim(unpadded_indices.unsqueeze(0), -1) * attention_mask.unsqueeze(0)
-    return alibi.reshape(alibi.shape[0] * alibi.shape[1], 1, -1)
-
-
-def dropout_add(x, residual, prob, training):
-    """
-    Dropout add function
-
-    Args:
-        x (`torch.tensor`, *required*):
-            input tensor
-        residual (`torch.tensor`, *rquired*):
-            esidual tensor
-        prob (`float`, *required*):
-            dropout probability
-        training (`bool`, *required*):
-            training mode
-    """
-    out = nn.functional.dropout(x, p=prob, training=training)
-    out = residual + out
-    return out
-
-
-def bloom_gelu_forward(x):
-    """
-    Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
-    make the model jitable.
-
-    Args:
-        x (`torch.tensor`, *required*):
-            input hidden states
-    """
-    return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
-
-
-def bloom_gelu_back(g, x):
-    """
-    gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
-    0.3989423 * x * torch.exp(-0.5 * x * x)
-
-    Args:
-        g (`torch.tensor`, *required*):
-            gradient output tensor
-        x (`torch.tensor`, *required*):
-            input tensor
-    """
-    x = x[0]  # x is a tuple of 1 element, needs to unpack it first
-    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
-    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
-    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
-    return ff * g
-
-
-class GeLUFunction(torch.autograd.Function):
-    @staticmethod
-    def forward(ctx, input):
-        ctx.save_for_backward(input)
-        return bloom_gelu_forward(input)
-
-    @staticmethod
-    def backward(ctx, grad_output):
-        input = ctx.saved_tensors
-        tmp = bloom_gelu_back(grad_output, input)
-        return tmp
-
-
-class BloomGelu(nn.Module):
-    """
-    BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
-    torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
-    copied from Megatron-DeepSpeed code and adapted for our needs
-
-    See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
-
-    """
-
-    def __init__(self):
-        super().__init__()
-
-    def forward(self, x):
-        if self.training:
-            return GeLUFunction.apply(x)
-        else:
-            return bloom_gelu_forward(x)
-
-
-class BloomScaledSoftmax(nn.Module):
-    """
-    fused operation: scaling + mask + softmax
-
-    Args:
-        input_in_fp16 (`bool`, *required*):
-            flag to indicate if input in fp16 data format.
-        input_in_bf16 (`bool`, *required*):
-            flag to indicate if input in bf16 data format.
-        scaled_masked_softmax_fusion (`bool`, *required*):
-            flag to indicate user want to use softmax fusion
-        mask_func (`function`, *required*):
-            mask function to be applied.
-        softmax_in_fp32 (`bool`, *required*):
-            if true, softmax in performed at fp32 precision.
-        scale (`float`, *required*):
-            scaling factor used in input tensor scaling.
-    """
-
-    def __init__(self, scaled_masked_softmax_fusion, mask_func, softmax_in_fp32, scale):
-        super().__init__()
-        self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
-        self.mask_func = mask_func
-        self.softmax_in_fp32 = softmax_in_fp32
-        self.scale = scale
-
-        if not (self.scale is None or softmax_in_fp32):
-            raise ValueError("softmax should be in fp32 when scaled")
-
-    def forward(self, input, mask, max_positions):
-        input_dtype = input.dtype
-        input_in_16bit = input_dtype in [torch.float16, torch.bfloat16]
-        softmax_dtype = torch.float32 if self.softmax_in_fp32 else input_dtype
-
-        if self.scale is not None:
-            input = input * self.scale
-
-        if mask is None:
-            mask = torch.ones(input.shape[0], max_positions, dtype=torch.bool, device=input.device)
-
-        mask = mask.to(input.device)
-        causal_mask = (
-            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))
-            .view(1, 1, max_positions, max_positions)
-            .to(input.device)
-        )
-        mask_output, padded_causal_mask = self.mask_func(input, mask, causal_mask)
-        probs = F.softmax(mask_output, dim=-1, dtype=softmax_dtype) * (~padded_causal_mask)
-
-        if input_in_16bit and self.softmax_in_fp32:
-            probs = probs.to(dtype=input_dtype)
-
-        return probs

+ 0 - 5
src/petals/src/client/__init__.py

@@ -1,5 +0,0 @@
-from petals.client.inference_session import InferenceSession
-from petals.client.remote_model import DistributedBloomConfig, DistributedBloomForCausalLM, DistributedBloomModel
-from petals.client.remote_sequential import RemoteSequential, RemoteTransformerBlock
-from petals.client.sequence_manager import RemoteSequenceManager
-from petals.client.spending_policy import NoSpendingPolicy, SpendingPolicyBase

+ 0 - 330
src/petals/src/client/inference_session.py

@@ -1,330 +0,0 @@
-from __future__ import annotations
-
-import asyncio
-import itertools
-import logging
-import time
-from typing import AsyncIterator, List, Optional
-
-import torch
-from hivemind import (
-    P2P,
-    MSGPackSerializer,
-    anext,
-    deserialize_torch_tensor,
-    get_logger,
-    nested_flatten,
-    serialize_torch_tensor,
-)
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
-from hivemind.p2p import StubBase
-from hivemind.proto import runtime_pb2
-
-from petals.client.sequence_manager import RemoteSequenceManager
-from petals.data_structures import CHAIN_DELIMITER, ModuleUID, RemoteSpanInfo, RPCInfo
-from petals.server.handler import TransformerConnectionHandler
-from petals.utils.misc import DUMMY, is_dummy
-
-logger = get_logger(__file__)
-
-
-class _ServerInferenceSession:
-    """
-    An interface to a single multi-step *inference* session for a a set of blocks on a specific server.
-
-    :note: This class is *not* fault-tolerant out of the box.
-    """
-
-    def __init__(
-        self,
-        uid: ModuleUID,
-        rpc_info: RPCInfo,
-        inputs_queue: asyncio.Queue,
-        outputs_aiter: AsyncIterator,
-        *,
-        timeout: float,
-        max_length: int,
-        points: int = 0,
-    ):
-        self.uid, self.rpc_info = uid, rpc_info
-        self.num_blocks = uid.count(CHAIN_DELIMITER) + 1
-        self._inputs_queue: asyncio.Queue[runtime_pb2.ExpertRequest] = inputs_queue
-        self._outputs_stream: AsyncIterator[runtime_pb2.ExpertResponse] = outputs_aiter
-        self.timeout = timeout
-        self._serialized_metadata = MSGPackSerializer.dumps(dict(max_length=max_length, points=points))
-        self.stepped = False
-        self.closed = False
-
-    @classmethod
-    async def create(
-        cls, stub: StubBase, uid: ModuleUID, rpc_info: RPCInfo, timeout: float, **metadata
-    ) -> _ServerInferenceSession:
-        """Create a new session for a given remote module. This code is meant to be run inside RemoteExpertWorker"""
-        inputs_queue = asyncio.Queue()
-        outputs_stream = await asyncio.wait_for(
-            stub.rpc_inference(cls._read_inputs_from_queue(inputs_queue)),
-            timeout,
-        )
-        return cls(uid, rpc_info, inputs_queue, outputs_stream, timeout=timeout, **metadata)
-
-    @staticmethod
-    async def _read_inputs_from_queue(queue: asyncio.Queue, input_timeout: Optional[float] = None) -> AsyncIterator:
-        while True:
-            next_input_message = await asyncio.wait_for(queue.get(), input_timeout)
-            yield next_input_message
-            if not next_input_message.uid and not next_input_message.tensors:
-                break  # this message means "done sending"
-
-    def step(
-        self,
-        new_hidden_states: torch.Tensor,
-        prompts: Optional[torch.Tensor] = None,
-        hypo_ids: Optional[torch.Tensor] = None,
-    ) -> torch.Tensor:
-        """
-        Inference step: send a chunk of input tesors and receive a chunk of outputs
-        :prompts: optional DEEP prompts, added to a prefix of each layer's outputs,
-          if specified, deep promts should have shape [num_layers, batch_size, prefix_len, hid_size]
-        """
-        if self.closed:
-            raise Exception("Session is closed, cannot perform step")
-        if prompts is None or is_dummy(prompts):
-            prompts = DUMMY
-        else:
-            assert prompts.ndim == 4, "deep promts should have shape [num_layers, batch_size, prefix_len, hid_size]"
-            assert prompts.shape[0] == self.num_blocks
-            assert prompts.shape[1] in (new_hidden_states.shape[0], 1)
-            assert prompts.shape[2] <= new_hidden_states.shape[1]
-            assert prompts.shape[3] == new_hidden_states.shape[2]
-
-        if hypo_ids is None or is_dummy(hypo_ids):
-            hypo_ids = DUMMY
-        else:
-            assert len(hypo_ids) == len(new_hidden_states)
-            assert hypo_ids.dtype == torch.int64
-
-        # serialize inputs and put them into the queue
-        inputs = (new_hidden_states, prompts, hypo_ids)
-        outputs_serialized = RemoteExpertWorker.run_coroutine(
-            self._step(
-                runtime_pb2.ExpertRequest(
-                    uid=self.uid,
-                    tensors=[
-                        serialize_torch_tensor(tensor.to(proto.dtype), proto.compression)
-                        for tensor, proto in zip(inputs, nested_flatten(self.rpc_info["inference_schema"]))
-                    ],
-                    metadata=self._serialized_metadata if not self.stepped else None,
-                )
-            )
-        )
-        outputs = list(map(deserialize_torch_tensor, outputs_serialized.tensors))
-        assert outputs[0].shape == inputs[0].shape, f"expected outputs[0] to be hidden states but got {outputs[0]}"
-        return outputs[0]
-
-    async def _step(self, inputs_serialized: runtime_pb2.ExpertRequest) -> runtime_pb2.ExpertResponse:
-        """Inference step on serialized data. This code is meant to be run inside RemoteExpertWorker"""
-        await self._inputs_queue.put(inputs_serialized)
-        self.stepped = True
-        return await asyncio.wait_for(anext(self._outputs_stream), self.timeout)
-
-    def close(self):
-        """Finish a given inference session, close the underlying connection"""
-        if self._outputs_stream is None:
-            return  # already closed
-        RemoteExpertWorker.run_coroutine(self._aclose_stream())
-        self._outputs_stream = self._inputs_queue = None
-        self.closed = True
-
-    async def _aclose_stream(self):
-        """Close the inference session. This code is meant to be run inside RemoteExpertWorker"""
-        if self._outputs_stream is None:
-            return  # already closed
-        if self.stepped:
-            await self._inputs_queue.put(runtime_pb2.ExpertRequest())  # empty request will trigger end of session
-            try:
-                await anext(self._outputs_stream)
-            except StopAsyncIteration:
-                pass
-
-    def __del__(self):
-        self.close()
-
-    def __enter__(self):
-        assert not self.closed
-        return self
-
-    def __exit__(self, *exc_details):
-        self.close()
-
-
-class InferenceSession:
-    """
-    An interface to a multi-step *inference* session for a sequence of remote transformer blocks
-    """
-
-    def __init__(self, sequence_manager: RemoteSequenceManager, p2p: P2P, max_length: int, **metadata):
-        self._sequence_manager = sequence_manager
-        self._p2p = p2p
-        self._closed = False
-        self._chosen_spans = []
-        self._server_sessions = []
-        self._server_inputs = []  # Used in case of server failures to regenerate attention caches on new servers
-        self._position = 0
-        self._max_length = max_length
-        self._metadata = metadata
-
-    def _enter_server_sessions(self, chosen_spans: List[RemoteSpanInfo]) -> List[_ServerInferenceSession]:
-        server_sessions = []
-        try:
-            for span in chosen_spans:
-                stub = TransformerConnectionHandler.get_stub(self._p2p, span.peer_id)
-                span_uids = CHAIN_DELIMITER.join(self._sequence_manager.block_uids[span.start : span.end])
-                session = RemoteExpertWorker.run_coroutine(
-                    _ServerInferenceSession.create(
-                        stub,
-                        span_uids,
-                        rpc_info=self._sequence_manager.rpc_info,
-                        timeout=self._sequence_manager.timeout,
-                        max_length=self._max_length,
-                        **self._metadata,
-                    )
-                )
-                server_sessions.append(session)
-                session.__enter__()
-            return server_sessions
-        except:
-            self._exit_server_sessions(server_sessions)
-            raise
-
-    def _exit_server_sessions(self, server_sessions: List[_ServerInferenceSession]) -> None:
-        for session in reversed(server_sessions):
-            try:
-                session.__exit__(None, None, None)
-            except Exception:
-                logger.debug("Caught exception while closing connection to server:", exc_info=True)
-
-    def __enter__(self) -> "InferenceSession":
-        assert not self._closed and not self._chosen_spans
-        return self
-
-    def step(self, inputs: torch.Tensor, prompts: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
-        assert not self._closed
-        if torch.is_grad_enabled():
-            logger.warning("Running inference session with grad enabled. Gradients will *not* be propagated correctly.")
-
-        n_blocks = len(self._sequence_manager)
-        if prompts is None or is_dummy(prompts):
-            prompts = DUMMY
-        else:
-            assert prompts.ndim == 4 and prompts.shape[0] == n_blocks
-
-        inputs_device = inputs.device
-        inputs_dtype = inputs.dtype
-        inputs = inputs.cpu()
-        prompts = prompts.cpu()
-
-        n_input_tokens = inputs.shape[1]
-        if self._position + n_input_tokens > self._max_length:
-            raise ValueError(
-                f"Maximum length exceeded: prefix {self._position} + current {n_input_tokens} exceeds pre-allocated maximum {self._max_length}"
-            )
-
-        server_idx = 0
-        block_idx = 0
-        recovery_until = -1  # Recovery mode is disabled until a failure happens
-        while block_idx < n_blocks:
-            for attempt_no in itertools.count():
-                logger.debug(f"Inference: block {block_idx}, attempt {attempt_no}")
-                try:
-                    if attempt_no >= 1:
-                        self._sequence_manager.update_()
-                    if not self._chosen_spans or not self._server_sessions or attempt_no >= 1:
-                        # If there is a failed server session, this code closes it
-                        self._exit_server_sessions(self._server_sessions[server_idx : server_idx + 1])
-
-                        n_prev_spans = len(self._chosen_spans)
-                        update_end = self._chosen_spans[server_idx].end if server_idx < n_prev_spans else n_blocks
-                        if attempt_no >= 1 and update_end > recovery_until:
-                            logger.info(
-                                f"Due to a server failure, remote attention caches "
-                                f"from block {block_idx} to {update_end} will be regenerated"
-                            )
-                        recovery_until = max(recovery_until, update_end)
-
-                        updated_spans = self._sequence_manager.make_sequence(block_idx, update_end)
-                        # make_sequence() could return a longer sequence
-                        updated_spans[-1].end = min(updated_spans[-1].end, update_end)
-                        updated_sessions = self._enter_server_sessions(updated_spans)
-                        logger.debug(
-                            f"Found path from block {block_idx} to {update_end} via {len(updated_spans)} servers"
-                        )
-
-                        # If there is a failed span, this code replaces it, otherwise it just adds new ones
-                        self._chosen_spans[server_idx : server_idx + 1] = updated_spans
-                        self._server_sessions[server_idx : server_idx + 1] = updated_sessions
-                        recovery_inputs = self._server_inputs[server_idx] if server_idx < n_prev_spans else None
-                        self._server_inputs[server_idx : server_idx + 1] = [recovery_inputs] + [None] * (
-                            len(updated_spans) - 1
-                        )
-                        assert len(self._chosen_spans) == len(self._server_sessions) == len(self._server_inputs), (
-                            f"Broken state: {len(self._chosen_spans)} spans, {len(self._server_sessions)} sessions, "
-                            f"{len(self._server_inputs)} inputs"
-                        )
-
-                    session = self._server_sessions[server_idx]
-                    span = self._chosen_spans[server_idx]
-
-                    if self._server_inputs[server_idx] is None:
-                        self._server_inputs[server_idx] = inputs
-                    elif self._server_inputs[server_idx].shape[1] == self._position:
-                        self._server_inputs[server_idx] = torch.cat(
-                            [self._server_inputs[server_idx], inputs[:, -n_input_tokens:]], dim=1
-                        )
-                    assert self._server_inputs[server_idx].shape[1] == self._position + n_input_tokens, (
-                        f"Broken input cache: server_idx={server_idx} shape={self._server_inputs[server_idx].shape} "
-                        f"position={self._position} n_input_tokens={n_input_tokens}"
-                    )
-
-                    if not session.stepped:
-                        inputs = self._server_inputs[server_idx]  # Pass full inputs including prefix
-                    else:
-                        inputs = inputs[:, -n_input_tokens:]  # No need to pass prefix further
-
-                    outputs = session.step(inputs, prompts[span.start : span.end], **kwargs)
-                    assert (
-                        inputs.shape == outputs.shape
-                    ), f"Shape mismatch: inputs.shape={inputs.shape}, outputs.shape={outputs.shape})"
-
-                    inputs = outputs
-                    server_idx += 1
-                    block_idx = span.end
-                    break
-                except Exception as e:
-                    delay = self._sequence_manager.get_retry_delay(attempt_no)
-                    logger.warning(
-                        f"Caught exception when running inference from block {block_idx} "
-                        f"(retry in {delay:.0f} sec): {repr(e)}"
-                    )
-                    traceback_level = logging.DEBUG if str(e) else logging.WARNING
-                    logger.log(traceback_level, "See detailed traceback below:", exc_info=True)
-                    time.sleep(delay)
-
-        self._position += n_input_tokens
-
-        outputs = inputs.to(device=inputs_device, dtype=inputs_dtype)
-        return outputs
-
-    def close(self, *exc_details):
-        """Finish a given inference session, close the underlying connection"""
-        if not self._closed:
-            self._server_inputs.clear()
-            self._exit_server_sessions(self._server_sessions)
-            self._server_sessions.clear()
-            self._chosen_spans.clear()
-            self._closed = True
-
-    def __exit__(self, *exc_details):
-        self.close(*exc_details)
-
-    def __del__(self):
-        self.close()

+ 0 - 154
src/petals/src/client/remote_forward_backward.py

@@ -1,154 +0,0 @@
-"""
-Utility functions that call RPC forward or backward on a single remote server
-"""
-import asyncio
-from typing import Iterable, List, Sequence, Tuple
-
-import torch
-from hivemind import nested_compare, nested_flatten, nested_pack, serialize_torch_tensor
-from hivemind.compression.serialization import deserialize_tensor_stream, deserialize_torch_tensor
-from hivemind.p2p import StubBase
-from hivemind.p2p.p2p_daemon_bindings.control import DEFAULT_MAX_MSG_SIZE, MAX_UNARY_PAYLOAD_SIZE
-from hivemind.proto import runtime_pb2
-from hivemind.utils.asyncio import aiter_with_timeout, iter_as_aiter
-from hivemind.utils.streaming import split_for_streaming
-
-from petals.data_structures import ModuleUID, RPCInfo
-
-
-async def _forward_unary(
-    uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, timeout: float, **kwargs
-) -> List[torch.Tensor]:
-    outputs: runtime_pb2.ExpertResponse = await stub.rpc_forward(
-        runtime_pb2.ExpertRequest(uid=uid, tensors=list(serialized_tensors), **kwargs),
-        timeout=timeout,
-    )
-    return [deserialize_torch_tensor(t) for t in outputs.tensors]
-
-
-async def _backward_unary(
-    uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, timeout: float, **kwargs
-) -> List[torch.Tensor]:
-    grad_inputs: runtime_pb2.ExpertResponse = await stub.rpc_backward(
-        runtime_pb2.ExpertRequest(uid=uid, tensors=list(serialized_tensors), **kwargs),
-        timeout=timeout,
-    )
-    return [deserialize_torch_tensor(t) for t in grad_inputs.tensors]
-
-
-async def _forward_stream(
-    uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, timeout: float, **kwargs
-) -> List[torch.Tensor]:
-    parts = (
-        runtime_pb2.ExpertRequest(uid=uid, tensors=[part], **kwargs)
-        for tensor in serialized_tensors
-        for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)
-    )
-    outputs = await asyncio.wait_for(stub.rpc_forward_stream(iter_as_aiter(parts)), timeout)
-    outputs = aiter_with_timeout(outputs, timeout)
-    return await deserialize_tensor_stream(msg.tensors async for msg in outputs)
-
-
-async def _backward_stream(
-    uid: str, serialized_tensors: Iterable[runtime_pb2.Tensor], stub, timeout: float, **kwargs
-) -> List[torch.Tensor]:
-    parts = (
-        runtime_pb2.ExpertRequest(uid=uid, tensors=[part], **kwargs)
-        for tensor in serialized_tensors
-        for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)
-    )
-    grad_inputs = await asyncio.wait_for(stub.rpc_backward_stream(iter_as_aiter(parts)), timeout)
-    grad_inputs = aiter_with_timeout(grad_inputs, timeout)
-    return await deserialize_tensor_stream(msg.tensors async for msg in grad_inputs)
-
-
-async def run_remote_forward(
-    uid: ModuleUID, stub: StubBase, rpc_info: RPCInfo, *inputs: torch.Tensor, timeout: float, **kwargs
-) -> Tuple[torch.Tensor, ...]:
-    """
-    Serializes input tensors and calls "rpc_forward" on a remote server.
-    Mostly adapted from https://github.com/learning-at-home/hivemind/blob/7a7c93aefffc9494c39e7b170c07cb06d8c09c4c/hivemind/moe/client/expert.py#L198
-    but without RemoteExpertWorker.run_coroutine() call that leads to deadlock here.
-    """
-
-    # Note: *inputs are flattened input tensors that follow the expert's info['input_schema']
-    # detach to avoid pickling the computation graph
-    assert len(kwargs) == len(rpc_info["keyword_names"]), f"Keyword args should be {rpc_info['keyword_names']}"
-    kwargs = {key: kwargs[key] for key in rpc_info["keyword_names"]}
-
-    # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
-    forward_inputs = (inputs, kwargs)
-
-    # Modify forward_schema to support prompts
-    args_schema, kwargs_schema = rpc_info["forward_schema"]
-    # TODO: rm this assert when support arbitrary number of input tensors
-    assert len(args_schema) == 1 and len(inputs) == 2
-    forward_schema_with_prompts = (tuple(args_schema * len(inputs)), kwargs_schema)
-
-    if not nested_compare(forward_inputs, forward_schema_with_prompts):
-        raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
-
-    forward_inputs = nested_flatten(forward_inputs)
-    inputs = tuple(tensor.cpu().detach() for tensor in forward_inputs)
-
-    # Asynchronous serialization
-    loop = asyncio.get_running_loop()
-    serialized_tensors = await asyncio.gather(
-        *(
-            loop.run_in_executor(None, serialize_torch_tensor, tensor.to(proto.dtype), proto.compression)
-            for tensor, proto in zip(inputs, nested_flatten(forward_schema_with_prompts))
-        )
-    )
-
-    # call RPC on remote server
-    size = sum(t.element_size() * t.nelement() for t in inputs)
-    if size > MAX_UNARY_PAYLOAD_SIZE:
-        deserialized_outputs = await _forward_stream(uid, serialized_tensors, stub, timeout, **kwargs)
-    else:
-        deserialized_outputs = await _forward_unary(uid, serialized_tensors, stub, timeout, **kwargs)
-
-    return nested_pack(deserialized_outputs, structure=rpc_info["outputs_schema"])
-
-
-async def run_remote_backward(
-    uid: ModuleUID,
-    stub: StubBase,
-    rpc_info: RPCInfo,
-    inputs: torch.Tensor,
-    grad_outputs: List[torch.Tensor],
-    *extra_tensors: torch.Tensor,
-    timeout: float,
-    **kwargs,
-) -> Sequence[torch.Tensor]:
-    """
-    Serializes grad outputs and calls "rpc_backward" on a remote server.
-    Mostly adapted from https://github.com/learning-at-home/hivemind/blob/7a7c93aefffc9494c39e7b170c07cb06d8c09c4c/hivemind/moe/client/expert.py#L221
-    but without RemoteExpertWorker.run_coroutine() call that leads to deadlock here.
-    """
-
-    grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs)
-    inputs_and_grad_outputs = tuple(nested_flatten((inputs, grad_outputs_cpu, *extra_tensors)))
-
-    # Modify forward_schema to support prompts
-    args_schema, kwargs_schema = rpc_info["forward_schema"]
-    assert len(args_schema) == 1 and isinstance(inputs, torch.Tensor)
-    # TODO generalize this
-    prompts_schema = next(iter(args_schema))
-    backward_schema = tuple(nested_flatten((rpc_info["forward_schema"], rpc_info["outputs_schema"], prompts_schema)))
-
-    # Asynchronous serialization
-    loop = asyncio.get_running_loop()
-    serialized_tensors = await asyncio.gather(
-        *(
-            loop.run_in_executor(None, serialize_torch_tensor, tensor.to(proto.dtype), proto.compression)
-            for tensor, proto in zip(inputs_and_grad_outputs, backward_schema)
-        )
-    )
-
-    size = sum(t.element_size() * t.nelement() for t in inputs_and_grad_outputs)
-    if size > MAX_UNARY_PAYLOAD_SIZE:
-        deserialized_grad_inputs = await _backward_stream(uid, serialized_tensors, stub, timeout, **kwargs)
-    else:
-        deserialized_grad_inputs = await _backward_unary(uid, serialized_tensors, stub, timeout, **kwargs)
-
-    return deserialized_grad_inputs

+ 0 - 328
src/petals/src/client/remote_generation.py

@@ -1,328 +0,0 @@
-from typing import List, Optional
-
-import torch
-from hivemind.utils.logging import get_logger
-
-from petals.utils.generation_algorithms import (
-    BeamSearchAlgorithm,
-    DecodingAlgorithm,
-    GreedyAlgorithm,
-    NucleusAlgorithm,
-    TopKAlgorithm,
-)
-from petals.utils.generation_constraints import ABCBloomConstraint, EosConstraint
-
-logger = get_logger(__file__)
-
-
-class RemoteGenerationMixin:
-    """
-    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`BloomForCausalLM`].
-    The class exposes can be used for:
-        - *greedy decoding*.
-        - *multinomial sampling*.
-        - *beam-search decoding*
-
-    This class is similar to transformer's [`generation_utils.GenerationMixin`], it can be used instead of it. However, it has some differences for remote usage.
-    """
-
-    @torch.no_grad()
-    def generate(
-        self,
-        inputs: Optional[torch.Tensor] = None,
-        do_sample: Optional[bool] = None,
-        temperature: float = 1.0,
-        top_k: Optional[int] = None,
-        top_p: Optional[float] = None,
-        num_beams: Optional[int] = 1,
-        bos_token_id: Optional[int] = None,
-        eos_token_id: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        max_length: Optional[int] = None,
-        max_new_tokens: Optional[int] = None,
-        decoding_algorithm: Optional[DecodingAlgorithm] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-        num_return_sequences: Optional[int] = None,
-        **model_kwargs,
-    ) -> torch.LongTensor:
-        """
-        Generates sequences of token ids for models with a language modeling head.
-
-        :param inputs: The input tokens to the model.
-        :param do_sample: Whether to sample from the model predictions or take the argmax.
-        :param temperature: The temperature to use for sampling.
-        :param top_k: The number of results to return.
-        :param top_p: The cumulative probability of results to return.
-        :param num_beams: The number of beams to use for beam search.
-        :param bos_token_id: The id of the beginning of sentence token.
-        :param eos_token_id: The id of the end of sentence token.
-        :param pad_token_id: The id of the padding token.
-        :param max_new_tokens: The maximum number of tokens to generate.
-        :param decoding_algorithm: The decoding algorithm to use.
-        :param provided_constraints: A list of constraints to use.
-        :param model_kwargs: Additional arguments to pass to the model.
-        :param num_return_sequences: How many hypothesis from the beam will be in output.
-        """
-
-        assert (
-            model_kwargs.get("logits_processor", None) is None
-        ), "For RemoteGenerationMixin models use BloomConstraints instead of logits_processor"
-        assert (
-            model_kwargs.get("logits_wrapper", None) is None
-        ), "For RemoveGenerationMixin models use DecodingAlgorithm instead of logits_wrapper"
-        assert (
-            model_kwargs.get("stopping_criteria", None) is None
-        ), "For RemoteGenerationMixin models use BloomConstraints instead of stopping_criteria"
-        if inputs is not None:
-            assert isinstance(inputs, torch.Tensor) and inputs.ndim == 2, "inputs must be a 2d tensor [batch, length]"
-        prefix_length = 0 if inputs is None else inputs.size(1)
-        prefix_length += self.config.pre_seq_len
-
-        bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
-        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
-        eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
-
-        batch_size = inputs.size(0)
-
-        assert (max_length is None) != (max_new_tokens is None), "please set max_length or max_new_tokens (not both)"
-        if max_length is not None and max_new_tokens is None:
-            max_new_tokens = max_length - prefix_length
-            assert max_new_tokens > 0, f"Provided max_length is less than prefix size: {max_length} < {inputs.size(1)}"
-        elif max_length is None and max_new_tokens is not None:
-            max_length = prefix_length + max_new_tokens
-
-        if inputs is None:
-            assert bos_token_id is not None, "You have to provide a bos_token_id if you do not provide inputs"
-            inputs = torch.tensor([[bos_token_id]] * num_beams, dtype=torch.long, device=self.device)
-
-        if decoding_algorithm is None:
-            if do_sample:
-                decoding_algorithm = self._choose_sample_algorithm(temperature, top_k, top_p)
-            elif num_beams is not None and num_beams > 1:
-                decoding_algorithm = BeamSearchAlgorithm(num_beams, batch_size=batch_size)
-            else:
-                decoding_algorithm = GreedyAlgorithm()
-
-        if num_beams > 1:
-            inputs = torch.cat([inputs] * num_beams, dim=0)
-            if batch_size > 1:
-                # TODO: resolve padding problem
-                logger.warning(
-                    f"You set batch_size {batch_size} within beam search generation. Be careful, results on sequences with different length may be padded wrong way"
-                )
-
-        if num_return_sequences is None:
-            num_return_sequences = 1
-
-        assert num_return_sequences <= num_beams, (
-            f"You want more sequences than the beam has."
-            " Check num_return_sequences: {num_return_sequences} and num_beams: {num_beams}."
-        )
-
-        constraints = self._get_constraints(
-            inputs=inputs,
-            eos_token_id=eos_token_id,
-            pad_token_id=pad_token_id,
-            provided_constraints=provided_constraints,
-        )
-
-        with self.transformer.h.inference_session(max_length=max_length) as sess:
-            outputs = []
-            # Find samples with padded inputs.
-            # They will be changed before all of the samples have right length.
-            if torch.any(inputs == pad_token_id):  # TODO: move to prepare_inputs
-                outputs += [inputs[:, : inputs.size(1) - (inputs == pad_token_id).sum(-1).max()]]
-            else:
-                outputs += [inputs]
-            last_token_id = None
-            seq_idx = outputs[0].size(1)
-            hypo_ids = torch.arange(outputs[0].size(0))
-            while True:
-                embs = self.transformer.word_embeddings(outputs[-1])
-                intermediate_prompts = None
-                if self.config.pre_seq_len > 0 and len(outputs) == 1:
-                    prompts, intermediate_prompts = self.transformer.get_prompt(embs.size(0))
-                    embs = torch.cat([prompts, embs], dim=1)
-                embs = self.transformer.word_embeddings_layernorm(embs)
-                hidden_state = sess.step(embs, prompts=intermediate_prompts, hypo_ids=hypo_ids)[:, -1]
-                hidden_state = self.transformer.ln_f(hidden_state)
-                lm_logits = self.lm_head(hidden_state)
-
-                for constraint in constraints:
-                    lm_logits = constraint(last_token_id, lm_logits, hypo_ids)
-                last_token_id, hypo_ids = decoding_algorithm(lm_logits)
-
-                # If some samples were padded, change only these samples
-                if seq_idx < inputs.size(1):
-                    pad_token_mask = inputs[:, seq_idx : seq_idx + 1] == pad_token_id
-                    last_token_id = (~pad_token_mask) * inputs[
-                        :, seq_idx : seq_idx + 1
-                    ] + pad_token_mask * last_token_id
-
-                # TODO: refactor outputs
-                if num_beams > 1:
-                    for i in range(len(outputs), 1, -1):
-                        outputs[i - 1] = outputs[i - 1][hypo_ids]
-
-                outputs.append(last_token_id)
-                seq_idx += 1
-                if torch.all(last_token_id == eos_token_id) or len(outputs) > max_new_tokens:
-                    break
-
-        outputs = torch.cat(outputs, dim=-1)
-
-        if num_beams > 1:
-            pre_return_idx = [
-                torch.arange(idx, num_return_sequences * batch_size, batch_size) for idx in range(batch_size)
-            ]
-            return_idx = torch.cat(pre_return_idx, dim=0)
-            outputs = outputs[return_idx]
-
-        return outputs
-
-    def greedy_search(
-        self,
-        input_ids: torch.LongTensor,
-        max_length: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        eos_token_id: Optional[int] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-        **model_kwargs,
-    ) -> torch.LongTensor:
-        """
-        Generates sequences of token ids for models with a language modeling head. Uses greedy search.
-
-        :param input_ids: The input tokens to the model.
-        :param max_length: The maximum length of the sequence to generate.
-        :param pad_token_id: The id of the padding token.
-        :param eos_token_id: The id of the end of sentence token.
-        :param provided_constraints: A list of constraints to use.
-        """
-        return self.generate(
-            inputs=input_ids,
-            max_new_tokens=max_length,
-            pad_token_id=pad_token_id,
-            eos_token_id=eos_token_id,
-            decoding_algorithm=GreedyAlgorithm(),
-            provided_constraints=provided_constraints,
-            **model_kwargs,
-        )
-
-    def sample(
-        self,
-        input_ids: torch.LongTensor,
-        temperature: float = 1.0,
-        top_k: Optional[int] = None,
-        top_p: Optional[float] = None,
-        max_length: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        eos_token_id: Optional[int] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-        **model_kwargs,
-    ) -> torch.LongTensor:
-        """
-        Generates sequences of token ids for models with a language modeling head. Uses sampling. Uses multinomial sampling algorithm. If top_k is provided, uses top_k sampling. If top_p is provided, uses nucleus sampling.
-
-        :param: input_ids: The input tokens to the model.
-        :param: temperature: The temperature to use for sampling.
-        :param: top_k: The number of samples to use for top_k sampling.
-        :param: top_p: The probability of using top_p sampling.
-        :param: max_length: The maximum length of the sequence to generate.
-        :param: pad_token_id: The id of the padding token.
-        :param: eos_token_id: The id of the end of sentence token.
-        :param: provided_constraints: A list of constraints to use.
-        :param: model_kwargs: Additional kwargs to pass to the model.
-        """
-
-        return self.generate(
-            inputs=input_ids,
-            max_new_tokens=max_length,
-            pad_token_id=pad_token_id,
-            eos_token_id=eos_token_id,
-            decoding_algorithm=self._choose_sample_algorithm(temperature, top_k, top_p),
-            provided_constraints=provided_constraints,
-            **model_kwargs,
-        )
-
-    def beam_search(
-        self,
-        input_ids: torch.LongTensor,
-        num_beams: int = 1,
-        max_length: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        eos_token_id: Optional[int] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-        **model_kwargs,
-    ) -> torch.LongTensor:
-        """
-        Generates sequences of token ids for models with a language modeling head. Uses beam search.
-
-        :param input_ids: The input tokens to the model.
-        :param num_beams: The number of beams to use.
-        :param max_length: The maximum length of the sequence to generate.
-        :param pad_token_id: The id of the padding token.
-        :param eos_token_id: The id of the end of sentence token.
-        :param provided_constraints: A list of constraints to use.
-        :param: model_kwargs: Additional kwargs to pass to the model.
-        """
-        decoding_algorithm = BeamSearchAlgorithm(
-            num_beams=num_beams,
-            batch_size=input_ids.size(0),
-        )
-        return self.generate(
-            inputs=input_ids,
-            num_beams=num_beams,
-            max_new_tokens=max_length,
-            pad_token_id=pad_token_id,
-            eos_token_id=eos_token_id,
-            decoding_algorithm=decoding_algorithm,
-            provided_constraints=provided_constraints,
-            **model_kwargs,
-        )
-
-    def beam_sample(
-        self,
-        input_ids: torch.LongTensor,
-        max_length: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        eos_token_id: Optional[int] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-        **model_kwargs,
-    ) -> torch.LongTensor:
-        raise NotImplementedError
-
-    def group_beam_search(
-        self,
-        input_ids: torch.LongTensor,
-        max_length: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        eos_token_id: Optional[int] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-        **model_kwargs,
-    ) -> torch.LongTensor:
-        raise NotImplementedError
-
-    def _choose_sample_algorithm(
-        self,
-        temperature: float = 1.0,
-        top_k: Optional[int] = None,
-        top_p: Optional[float] = None,
-    ) -> DecodingAlgorithm:
-        if (top_k is not None) and (top_p is not None):
-            raise ValueError("You have to provide only top_k or top_p for sampling")
-        if top_k:
-            return TopKAlgorithm(top_k, temperature)
-        elif top_p:
-            return NucleusAlgorithm(top_p, temperature)
-
-    def _get_constraints(
-        self,
-        inputs: Optional[torch.Tensor] = None,
-        eos_token_id: Optional[int] = None,
-        pad_token_id: Optional[int] = None,
-        provided_constraints: List[ABCBloomConstraint] = [],
-    ) -> List[ABCBloomConstraint]:
-        constraints = []
-        constraints.extend(provided_constraints)
-        constraints.append(EosConstraint(inputs, eos_token_id, pad_token_id))
-        return constraints

+ 0 - 198
src/petals/src/client/remote_model.py

@@ -1,198 +0,0 @@
-# this code is in active development, interfaces may change
-from typing import List, Optional
-
-import hivemind
-import torch
-import torch.nn as nn
-from hivemind import get_logger, use_hivemind_log_handler
-from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
-
-from petals.bloom.model import (
-    BloomConfig,
-    BloomForCausalLM,
-    BloomForSequenceClassification,
-    BloomModel,
-    BloomPreTrainedModel,
-    LMHead,
-)
-from petals.client.remote_generation import RemoteGenerationMixin
-from petals.client.remote_sequential import RemoteSequential
-from petals.constants import PUBLIC_INITIAL_PEERS
-from petals.utils.misc import DUMMY
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-class DistributedBloomConfig(BloomConfig):
-    """
-    A bloom config that contains information about DHT peers.
-    To create a distributed model, one must provide dht_prefix and either initial_peers or dht.
-    """
-
-    initial_peers: List[str] = PUBLIC_INITIAL_PEERS  # a list of initial peers for hivemind DHT
-    dht_prefix: str  # a prefix for all dht keys that correspond to this model (usually equal to model name)
-    dht: Optional[hivemind.DHT] = None  # a running DHT instance, e.g. when using the same DHT for multiple models
-    chunk_size_for_efficient_fp16_on_cpu: int = 10000  # a chunk size for a LM head for efficient half-precision on CPU
-    pre_seq_len: int = 0  # a number of tokens for prompt tuning.
-    tuning_mode: Optional[str] = None  # One of the finetune options: [None, 'shallow_ptune', 'deep_ptune', 'adapters']
-
-
-class DistributedBloomModel(BloomModel):
-    """BloomModel, but all transformer layers are hosted by the swarm"""
-
-    config_class = DistributedBloomConfig
-
-    def __init__(self, config: DistributedBloomConfig):
-        assert config.dht_prefix, "Could not find dht_prefix in config, please create model with dht_prefix=..."
-        assert config.initial_peers or config.dht, "Please specify initial_peers=list(...) or dht=hivemind.DHT(...)"
-
-        n_layer, config.n_layer = config.n_layer, 0  # temporarily set n_layer to 0 to prevent layer initialization
-        super().__init__(config)
-        assert len(self.h) == 0
-        config.n_layer = n_layer
-
-        dht = (
-            config.dht
-            if config.dht is not None
-            else hivemind.DHT(initial_peers=config.initial_peers, client_mode=True, start=True)
-        )
-        assert isinstance(dht, hivemind.DHT) and dht.is_alive(), "dht must be a running hivemind.DHT instance"
-        self.h = RemoteSequential(config, dht, config.dht_prefix)
-
-        # Forbid accumulate grads for embeddings and layernorm
-        self.set_requires_grad(False)
-
-        if config.tuning_mode and "ptune" in config.tuning_mode:
-            assert config.pre_seq_len > 0, "The number of prefix tokens must be > 0"
-            self.pre_seq_len = config.pre_seq_len
-            self.prompt_embeddings = nn.Embedding(self.pre_seq_len, config.hidden_size)
-            self.prefix_tokens = torch.arange(self.pre_seq_len).long()
-
-            if config.tuning_mode == "deep_ptune":
-                self.intermediate_prompt_embeddings = nn.Embedding(
-                    self.pre_seq_len,
-                    config.num_hidden_layers * config.hidden_size
-                    # ^-- TODO: should be num_hidden_layers - 1
-                )
-                self.intermediate_prompt_embeddings.weight.data.zero_()
-        elif config.tuning_mode:
-            raise NotImplementedError(f"{self.tuning_mode} mode is not supported for now")
-
-    def set_requires_grad(self, value):
-        for p in self.parameters():
-            p.requires_grad = value
-
-    def get_prompt(self, batch_size):
-        prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1)
-        prefix_tokens = prefix_tokens.to(self.word_embeddings.weight.device)
-        prompts = self.prompt_embeddings(prefix_tokens)
-
-        if self.config.tuning_mode == "deep_ptune":
-            intermediate_prompts = self.intermediate_prompt_embeddings(prefix_tokens)
-            intermediate_prompts = intermediate_prompts.view(
-                batch_size, self.pre_seq_len, len(self.h), self.config.hidden_size  # TODO: should be len(self.h) - 1
-            )
-            intermediate_prompts = intermediate_prompts.permute([2, 0, 1, 3])
-        else:
-            intermediate_prompts = DUMMY
-        return prompts, intermediate_prompts
-
-    def forward(
-        self,
-        input_ids: Optional[torch.LongTensor] = None,
-        inputs_embeds: Optional[torch.Tensor] = None,
-        attention_mask: Optional[torch.Tensor] = None,
-        **kwargs,
-    ):
-        assert attention_mask is None, "DistributedBloomModel does not support attention masks right now"
-
-        for k, v in kwargs.items():
-            if not (v is None or v is False):
-                logger.debug(f"Extra keyword arguments are not yet supported (got {k} = {v})")
-
-        if input_ids is not None and inputs_embeds is not None:
-            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
-        elif input_ids is not None:
-            input_shape = input_ids.size()
-            input_ids = input_ids.view(-1, input_shape[-1])
-        elif inputs_embeds is not None:
-            input_shape = inputs_embeds.size()[:-1]
-        else:
-            raise ValueError("You have to specify either input_ids or inputs_embeds")
-
-        if inputs_embeds is None:
-            inputs_embeds = self.word_embeddings(input_ids)
-
-        if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
-            batch_size = inputs_embeds.shape[0]
-            prompts, intermediate_prompts = self.get_prompt(batch_size)
-            inputs_embeds = torch.cat([prompts, inputs_embeds], dim=1)
-
-        hidden_states = self.word_embeddings_layernorm(inputs_embeds)
-        output_shape = input_shape + (hidden_states.size(-1),)
-
-        if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
-            hidden_states = self.h(hidden_states, prompts=intermediate_prompts)
-        else:
-            hidden_states = self.h(hidden_states)
-
-        # Remove prefix
-        if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
-            hidden_states = hidden_states[:, self.pre_seq_len :]
-
-        # Add last hidden state
-        hidden_states = self.ln_f(hidden_states)
-        hidden_states = hidden_states.view(output_shape)
-        return BaseModelOutputWithPastAndCrossAttentions(
-            last_hidden_state=hidden_states,
-            past_key_values=None,
-            hidden_states=None,
-            attentions=None,
-        )
-
-
-class DistributedBloomForCausalLM(RemoteGenerationMixin, BloomForCausalLM):
-    """DistributedBloomForCausalLM, but all transformer layers are hosted by the swarm"""
-
-    config_class = DistributedBloomConfig
-
-    def __init__(self, config: DistributedBloomConfig):
-        BloomPreTrainedModel.__init__(self, config)
-        self.transformer = DistributedBloomModel(config)
-        self.lm_head = LMHead(config, self.transformer.word_embeddings)
-
-        # Initialize weights and apply final processing
-        self.post_init()
-
-    def get_input_embeddings(self):
-        return self.transformer.word_embeddings
-
-    def get_output_embeddings(self):
-        if self.config.tie_word_embeddings:
-            return None
-        return self.lm_head
-
-    def set_input_embeddings(self, new_embeddings: nn.Embedding):
-        assert isinstance(new_embeddings, nn.Embedding)
-        self.transformer.word_embeddings = self.lm_head.word_embeddings = new_embeddings
-        assert self.lm_head.bias is None or len(self.lm_head.bias) == new_embeddings.num_embeddings
-
-    def set_output_embeddings(self, new_lm_head: nn.Linear):
-        with torch.no_grad():
-            self.lm_head.word_embeddings.weight[...] = new_lm_head.weight
-            self.lm_head.bias[...] = new_lm_head.bias
-
-
-class DistributedBloomForSequenceClassification(BloomForSequenceClassification):
-    config_class = DistributedBloomConfig
-
-    def __init__(self, config: DistributedBloomConfig):
-        BloomPreTrainedModel.__init__(self, config)
-        self.num_labels = config.num_labels
-
-        self.transformer = DistributedBloomModel(config)
-        self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
-
-        # Initialize weights and apply final processing
-        self.post_init()

+ 0 - 102
src/petals/src/client/remote_sequential.py

@@ -1,102 +0,0 @@
-from __future__ import annotations
-
-from typing import Optional, Union
-
-import torch
-from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
-from torch import nn
-
-import petals
-from petals.client.inference_session import InferenceSession
-from petals.client.sequence_manager import RemoteSequenceManager
-from petals.client.sequential_autograd import _RemoteSequentialAutogradFunction
-from petals.data_structures import UID_DELIMITER
-from petals.utils.misc import DUMMY
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-class RemoteSequential(nn.Module):
-    """
-    A sequence of transformer blocks hosted by the swarm.
-    """
-
-    def __init__(
-        self,
-        config: petals.DistributedBloomConfig,
-        dht: DHT,
-        dht_prefix: Optional[str] = None,
-        p2p: Optional[P2P] = None,
-        sequence_manager: Optional[RemoteSequenceManager] = None,
-    ):
-        super().__init__()
-        self.config = config
-        self.dht = dht
-        self.dht_prefix = dht_prefix or config.dht_prefix
-        self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p()) if p2p is None else p2p
-
-        num_blocks = self.config.n_layer if sequence_manager is None else len(sequence_manager)
-        block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(num_blocks)]
-        if sequence_manager is None:
-            logger.debug(f"Creating new sequence manager for block uids: {block_uids}")
-            self.sequence_manager = RemoteSequenceManager(dht, block_uids, self.p2p)
-            self.is_subsequence = False
-        else:
-            logger.debug(f"Reusing sequence manager with {len(sequence_manager)} modules")
-            self.sequence_manager = sequence_manager
-            assert isinstance(sequence_manager.block_uids, list)
-            self.is_subsequence = self.sequence_manager.block_uids != block_uids
-
-    def forward(self, inputs: torch.Tensor, prompts: torch.Tensor = DUMMY):
-        outputs = _RemoteSequentialAutogradFunction.apply(inputs, prompts, self.sequence_manager)
-        return outputs
-
-    def __getitem__(self, ix: Union[int, slice]) -> RemoteSequential:
-        assert isinstance(ix, (int, slice))
-        if isinstance(ix, int):
-            return RemoteTransformerBlock(
-                self.config,
-                self.dht,
-                dht_prefix=self.dht_prefix,
-                p2p=self.p2p,
-                sequence_manager=self.sequence_manager[ix],
-            )
-        else:
-            return RemoteSequential(
-                self.config,
-                self.dht,
-                dht_prefix=self.dht_prefix,
-                p2p=self.p2p,
-                sequence_manager=self.sequence_manager[ix],
-            )
-
-    def __iter__(self):
-        for block_index in range(len(self)):
-            yield self[block_index]
-
-    def __len__(self):
-        return len(self.sequence_manager)
-
-    def inference_session(self, **kwargs) -> InferenceSession:
-        self.sequence_manager.update_()
-        return InferenceSession(self.sequence_manager, self.p2p, **kwargs)
-
-    def extra_repr(self) -> str:
-        return f"modules={self.sequence_manager.block_uids[0]}..{self.sequence_manager.block_uids[-1]}"
-
-
-class RemoteTransformerBlock(RemoteSequential):
-    """Single transformer block hosted by swarm
-
-    This class is deprecated and kept for backward compatibility.
-    It will be removed soon in favor of using ``RemoteSequential`` directly.
-    """
-
-    def __init__(self, *args, **kwargs):
-        super().__init__(*args, **kwargs)
-        assert len(self) == 1, "Remote Block is a sequence size 1"
-
-    def extra_repr(self):
-        return f"{self.sequence_manager.block_uids[0]}"

+ 0 - 167
src/petals/src/client/sequence_manager.py

@@ -1,167 +0,0 @@
-from __future__ import annotations
-
-import random
-import threading
-from typing import List, Optional, Sequence, Tuple, Union
-
-from hivemind import DHT, P2P, DHTExpiration, MSGPackSerializer
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
-from hivemind.proto import runtime_pb2
-from hivemind.utils.logging import get_logger, use_hivemind_log_handler
-
-from petals.client.spending_policy import NoSpendingPolicy
-from petals.data_structures import ModuleUID, RemoteModuleInfo, RemoteSpanInfo, ServerState
-from petals.dht_utils import get_remote_module_infos
-from petals.server.handler import TransformerConnectionHandler
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-class RemoteSequenceManager:
-    """
-    Keeps and updates the meta-information about which peers host which blocks.
-    In future, this class is intended to maintain latency statistics, ban non-responsive peers, etc.
-    """
-
-    def __init__(
-        self,
-        dht: DHT,
-        block_uids: Sequence[ModuleUID],
-        p2p: P2P,
-        max_retries: int = 3,
-        timeout: float = 20,
-        min_backoff: float = 1,
-    ):
-        assert len(block_uids) > 0, "Sequences must contain at least one block"
-        self.dht, self.p2p = dht, p2p
-        self.block_uids: List[ModuleUID] = list(block_uids)
-        self.block_infos: List[Optional[RemoteModuleInfo]] = [None] * len(self.block_uids)
-        self.spans_by_priority: List[RemoteSpanInfo] = []  # sorted from best to worst
-        self.spans_containing_block: Tuple[List[RemoteSpanInfo], ...] = tuple([] for _ in range(len(self.block_uids)))
-        self.last_update_time: DHTExpiration = -float("inf")
-        self.max_retries = max_retries
-        self.timeout, self.min_backoff = timeout, min_backoff
-        self._rpc_info = None
-        self.lock_changes = threading.Lock()
-        self.update_()
-
-        for uid, info in zip(self.block_uids, self.block_infos):
-            assert info is not None, f"Found no remote peers for block {uid}"
-        assert self.spans_by_priority and self.spans_containing_block
-
-    def make_sequence(self, start_index: int = 0, end_index: Optional[int] = None) -> List[RemoteSpanInfo]:
-        """
-        Form a sequence of remote servers that collectively serve all consecutive layers
-
-        :param start_index: optional index of the first module in a sequence, default = the first of block_uids
-        :param end_index: optional index of the last module (non-inclusive), default = after last of block uids
-        """
-        end_index = end_index if end_index is not None else len(self.block_uids)
-        span_sequence = []
-        current_index = start_index
-        while current_index < end_index:
-            candidate_spans = self.spans_containing_block[current_index]
-            chosen_span = random.choice(candidate_spans)  # TODO this should be replaced with proper load balancing
-
-            assert chosen_span.start <= current_index < chosen_span.end
-            span_sequence.append(RemoteSpanInfo(start=current_index, end=chosen_span.end, peer_id=chosen_span.peer_id))
-            current_index = chosen_span.end
-
-        return span_sequence
-
-    def __getitem__(self, ix: Union[int, slice]) -> RemoteSequenceManager:
-        """Get a RemoteSequenceManager for a sub-sequence of blocks"""
-        assert isinstance(ix, (int, slice))
-        if not isinstance(ix, slice):
-            ix = slice(int(ix), int(ix) + 1, 1)
-        with self.lock_changes:
-            subseq = RemoteSequenceManager(self.dht, self.block_uids[ix], self.p2p)
-            subseq.block_infos = self.block_infos[ix]
-            subseq.spans_by_priority, subseq.spans_containing_block = subseq.compute_spans(subseq.block_infos)
-            subseq.last_update_time = self.last_update_time
-        return subseq
-
-    def update_(self):
-        with self.lock_changes:
-            self.update_block_infos_()
-            self.spans_by_priority, self.spans_containing_block = self.compute_spans(self.block_infos)
-
-    def update_block_infos_(self):
-        new_block_infos = get_remote_module_infos(self.dht, self.block_uids, expiration_time=float("inf"))
-        assert len(new_block_infos) == len(self.block_uids)
-        for block_index, (uid, info) in enumerate(zip(self.block_uids, new_block_infos)):
-            if info is None:
-                logger.warning(f"Found no block info for block {uid}")
-                continue
-            if not isinstance(info, RemoteModuleInfo):
-                logger.warning(f"Unexpected dht entry type for {uid}: {info}")
-            if not info.servers:
-                logger.warning(f"Found no active peers for block {uid}")
-            if info.uid != uid:
-                logger.warning(f"The DHT entry for {uid} actually points to {info.uid}")
-            self.block_infos[block_index] = info
-
-    @staticmethod
-    def compute_spans(block_infos: Sequence[RemoteModuleInfo]):
-        closed_spans = []
-        active_spans = {}
-        for block_index, info in enumerate(block_infos):
-            if info is not None:
-                for peer_id, server in info.servers.items():
-                    if server.state != ServerState.ONLINE:
-                        continue
-                    if peer_id not in active_spans:
-                        active_spans[peer_id] = RemoteSpanInfo(start=block_index, end=block_index + 1, peer_id=peer_id)
-                    else:  # peer_id in active_spans
-                        active_spans[peer_id].end = block_index + 1
-
-            for peer_id in list(active_spans.keys()):
-                if (
-                    info is None
-                    or peer_id not in info.servers
-                    or info.servers[peer_id].state != ServerState.ONLINE
-                    or block_index == len(block_infos) - 1
-                ):
-                    closed_spans.append(active_spans.pop(peer_id))
-        assert not active_spans, f"spans: {active_spans}"
-
-        closed_spans.sort(key=lambda span: span.end - span.start, reverse=True)
-
-        spans_containing_block = tuple(list() for _ in range(len(block_infos)))
-        for span in closed_spans:
-            for block_index in range(span.start, span.end):
-                spans_containing_block[block_index].append(span)
-
-        return closed_spans, spans_containing_block
-
-    def __len__(self):
-        return len(self.block_uids)
-
-    @property
-    def rpc_info(self):
-        """Return the rpc_info queried from one of the servers that hold the first block"""
-        if self._rpc_info is None:
-            retries = 0
-            for i in range(self.max_retries):
-                try:
-                    self.update_()
-                    peer_id = random.choice(list(self.block_infos[0].servers.keys()))
-                    stub = TransformerConnectionHandler.get_stub(self.p2p, peer_id)
-                    outputs = RemoteExpertWorker.run_coroutine(
-                        stub.rpc_info(runtime_pb2.ExpertUID(uid=self.block_uids[0]))
-                    )
-                    self._rpc_info = MSGPackSerializer.loads(outputs.serialized_info)
-                    break
-                except Exception as e:
-                    retries += 1
-                    if retries >= self.max_retries:
-                        raise e
-                    else:
-                        logger.warning(f"Tried to call rpc_info, but caught {repr(e)}", exc_info=True)
-        return self._rpc_info
-
-    def get_retry_delay(self, attempt_no: int) -> float:
-        if attempt_no == 0:
-            return 0
-        return self.min_backoff * 2 ** (attempt_no - 1)

+ 0 - 260
src/petals/src/client/sequential_autograd.py

@@ -1,260 +0,0 @@
-"""
-A PyTorch autograd function that runs forward/backward on a sequence of remote servers in a fault-tolerant manner
-"""
-import asyncio
-import itertools
-import logging
-from collections import deque
-from typing import List, Optional, Sequence, Tuple
-
-import torch
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
-from hivemind.utils.logging import get_logger
-
-from petals.client.remote_forward_backward import run_remote_backward, run_remote_forward
-from petals.client.sequence_manager import RemoteSequenceManager
-from petals.data_structures import CHAIN_DELIMITER, RemoteSpanInfo
-from petals.server.handler import TransformerConnectionHandler
-from petals.utils.misc import DUMMY, is_dummy
-
-logger = get_logger(__file__)
-
-MAX_TOKENS_IN_BATCH = 1024
-
-
-async def sequential_forward(
-    inputs: torch.Tensor,
-    prompts: torch.Tensor,
-    sequence_manager: RemoteSequenceManager,
-    start_index: int = 0,
-    end_index: Optional[int] = None,
-) -> Tuple[torch.Tensor, Sequence[torch.Tensor], Sequence[RemoteSpanInfo]]:
-    """
-    Constructs a routing path from <start_index> to <end_index>.
-    Performs chained forward for each subsequence of blocks on the path.
-    If some subsequence fails, reconstructs the remaining path and tries to finish the forward.
-    """
-
-    assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3, f"{type(inputs)}: {inputs.ndim}"
-
-    inputs_device = inputs.device
-    inputs_dtype = inputs.dtype
-    inputs = inputs.cpu()
-    prompts = prompts.cpu()
-
-    end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
-    assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)
-    assert is_dummy(prompts) or len(prompts) == len(
-        sequence_manager.block_uids
-    )  # should be n_layers - 1 but add extra prompts for convenience
-
-    sequences = deque()
-    intermediate_inputs = []
-    done_sequences = []
-    outputs = inputs
-
-    block_idx = start_index
-    while block_idx < end_index:
-        for attempt_no in itertools.count():
-            logger.debug(f"Forward: block {block_idx}, attempt {attempt_no}")
-            try:
-                if attempt_no >= 1:
-                    sequence_manager.update_()
-                if not sequences or attempt_no >= 1:
-                    sequences = deque(sequence_manager.make_sequence(block_idx, end_index))
-                    # make_sequence() could return a longer sequence
-                    sequences[-1].end = min(sequences[-1].end, end_index)
-                    logger.debug(f"Found path from block {block_idx} to {end_index} via {len(sequences)} servers")
-
-                span = sequences.popleft()
-
-                stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
-                inputs_and_prompts = [inputs, prompts[span.start : span.end]]
-
-                span_uids = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start : span.end])
-                (outputs,) = await run_remote_forward(
-                    span_uids, stub, sequence_manager.rpc_info, *inputs_and_prompts, timeout=sequence_manager.timeout
-                )
-
-                assert isinstance(outputs, torch.Tensor)
-                assert outputs.shape == inputs.shape, f"Expected output {inputs.shape}, got {outputs.shape}"
-
-                # Save intermediate inputs and subsequences if the forward is already done for them
-                intermediate_inputs.append(inputs)
-                done_sequences.append(span)
-
-                inputs = outputs
-                block_idx = span.end
-                break
-            except Exception as e:
-                delay = sequence_manager.get_retry_delay(attempt_no)
-                logger.warning(
-                    f"Caught exception when running forward from block {block_idx} "
-                    f"(retry in {delay:.0f} sec): {repr(e)}"
-                )
-                traceback_level = logging.DEBUG if str(e) else logging.WARNING
-                logger.log(traceback_level, "See detailed traceback below:", exc_info=True)
-                await asyncio.sleep(delay)
-
-    outputs = inputs.to(device=inputs_device, dtype=inputs_dtype)
-    intermediate_inputs = [tensor.to(device=inputs_device, dtype=inputs_dtype) for tensor in intermediate_inputs]
-    return outputs, intermediate_inputs, done_sequences
-
-
-async def sequential_backward(
-    grad_outputs: Sequence[torch.Tensor],
-    intermediate_inputs: List[torch.Tensor],
-    prompts: torch.Tensor,
-    forward_sequences: List[RemoteSpanInfo],
-    sequence_manager: RemoteSequenceManager,
-) -> Tuple[Sequence[torch.Tensor], torch.Tensor]:
-    """
-    Performs chained backward for each forward subsequence.
-    If some subsequence fails, reconstructs the particular sub-path and recovers the backward.
-    """
-    assert len(intermediate_inputs) == len(forward_sequences)
-
-    grad_outputs_device = grad_outputs[0].device if grad_outputs else None
-    grad_outputs_dtype = grad_outputs[0].dtype if grad_outputs else None
-    prompts_device = prompts.device
-    prompts_dtype = prompts.dtype
-
-    grad_outputs = [tensor.cpu() for tensor in grad_outputs]
-    intermediate_inputs = [tensor.cpu() for tensor in intermediate_inputs]
-    prompts = prompts.cpu()
-
-    grad_prompts_reversed = []
-    while len(forward_sequences) > 0 and len(intermediate_inputs) > 0:
-        inputs = intermediate_inputs.pop()
-        span = forward_sequences.pop()
-        for attempt_no in itertools.count():
-            logger.debug(f"Backward: block {span.end - 1}, attempt {attempt_no}")
-            try:
-                if attempt_no >= 1:
-                    sequence_manager.update_()
-                    _, backup_inputs, backup_sequences = await sequential_forward(
-                        inputs, prompts, sequence_manager, start_index=span.start, end_index=span.end
-                    )
-                    assert len(backup_inputs) == len(backup_sequences)
-                    assert backup_sequences[0].start == span.start
-                    assert backup_sequences[-1].end == span.end
-
-                    intermediate_inputs.extend(backup_inputs)
-                    forward_sequences.extend(backup_sequences)
-                    inputs = intermediate_inputs.pop()
-                    span = forward_sequences.pop()
-
-                span_uids = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start : span.end])
-                stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
-                grad_outputs, *span_grad_prompts = await run_remote_backward(
-                    span_uids,
-                    stub,
-                    sequence_manager.rpc_info,
-                    inputs,
-                    grad_outputs,
-                    prompts[span.start : span.end],
-                    timeout=sequence_manager.timeout,
-                )
-                grad_outputs = [grad_outputs]
-                grad_prompts_reversed.extend(span_grad_prompts)
-                break
-            except Exception as e:
-                delay = sequence_manager.get_retry_delay(attempt_no)
-                logger.warning(
-                    f"Caught exception when running backward between blocks {span.start}-{span.end} "
-                    f"(retry in {delay:.0f} sec): {repr(e)}"
-                )
-                traceback_level = logging.DEBUG if str(e) else logging.WARNING
-                logger.log(traceback_level, "See detailed traceback below:", exc_info=True)
-                await asyncio.sleep(delay)
-
-    # For now, we do not support mixed dummy and grad prompts
-    # Concat in num_layer dimension
-    grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else None
-
-    if grad_outputs_dtype is not None:
-        grad_outputs = [tensor.to(device=grad_outputs_device, dtype=grad_outputs_dtype) for tensor in grad_outputs]
-    if grad_prompts is not None:
-        grad_prompts = grad_prompts.to(device=prompts_device, dtype=prompts_dtype)
-    return grad_outputs, grad_prompts
-
-
-async def _gather_forward(input_batches, prompt_batches, sequence_manager):
-    """Wrapper for asyncio.gather to perform parallel sequential forwards"""
-    return await asyncio.gather(
-        *[
-            sequential_forward(input_batch, prompt_batch, sequence_manager)
-            for input_batch, prompt_batch in zip(input_batches, prompt_batches)
-        ]
-    )
-
-
-async def _gather_backward(
-    grad_output_batches, intermediate_input_batches, prompt_batches, forward_sequences, sequence_manager
-):
-    """Wrapper for asyncio.gather to perform parallel sequential backwards"""
-    return await asyncio.gather(
-        *[
-            sequential_backward((grad_output,), input_batch, prompt_batch, spans, sequence_manager)
-            for grad_output, input_batch, prompt_batch, spans in zip(
-                grad_output_batches, intermediate_input_batches, prompt_batches, forward_sequences
-            )
-        ]
-    )
-
-
-class _RemoteSequentialAutogradFunction(torch.autograd.Function):
-    """
-    PyTorch autograd function that provides forward and backward calls for the entire sequence of remote transformer blocks.
-    This function splits input data into batches with <MAX_TOKENS_IN_BATCH> and performs efficient parallel processing.
-    """
-
-    @staticmethod
-    def forward(ctx, inputs: torch.Tensor, prompts: torch.Tensor, sequence_manager: RemoteSequenceManager):
-        batch_size = max(MAX_TOKENS_IN_BATCH // inputs.shape[1], 1)
-        input_batches: Sequence[torch.Tensor] = inputs.detach().split(batch_size)
-        if is_dummy(prompts):
-            prompt_batches = [DUMMY] * len(input_batches)
-        else:
-            prompt_batches: Sequence[torch.Tensor] = prompts.detach().split(batch_size, dim=1)
-
-        sequence_manager.rpc_info  # lazy init
-        outputs = RemoteExpertWorker.run_coroutine(_gather_forward(input_batches, prompt_batches, sequence_manager))
-        assert len(outputs) == len(input_batches)
-
-        output_batches = [output[0] for output in outputs]
-        intemediate_input_batches = [output[1] for output in outputs]
-        sequences_for_batches = [output[2] for output in outputs]
-
-        ctx.prompt_batches = prompt_batches
-        ctx.sequence_manager = sequence_manager
-        ctx.intemediate_input_batches = intemediate_input_batches
-        ctx.sequences_for_batches = sequences_for_batches
-        return torch.cat(output_batches, dim=0)
-
-    @staticmethod
-    def backward(ctx, grad_outputs: torch.Tensor):
-        intermediate_input_batches: List[Sequence[torch.Tensor]] = ctx.intemediate_input_batches
-        forward_sequences: List[Sequence[RemoteSpanInfo]] = ctx.sequences_for_batches
-        ctx.sequence_manager.rpc_info  # lazy init
-
-        batch_size = max(MAX_TOKENS_IN_BATCH // grad_outputs.shape[1], 1)
-        grad_output_batches: Sequence[torch.Tensor] = grad_outputs.split(batch_size)
-        assert len(intermediate_input_batches) == len(grad_output_batches) == len(forward_sequences)
-
-        outputs = RemoteExpertWorker.run_coroutine(
-            _gather_backward(
-                grad_output_batches,
-                intermediate_input_batches,
-                ctx.prompt_batches,
-                forward_sequences,
-                ctx.sequence_manager,
-            )
-        )
-        grad_input_batches = [output[0][0] for output in outputs]
-        grad_prompt_batches = [output[1] for output in outputs]
-
-        grad_inputs = torch.cat(grad_input_batches, dim=0)
-        dummy_grad_prompts = [grad_prompt is None for grad_prompt in grad_prompt_batches]
-        grad_prompts = torch.cat(grad_prompt_batches, dim=1) if not any(dummy_grad_prompts) else None
-        return (grad_inputs, grad_prompts, None)

+ 0 - 14
src/petals/src/client/spending_policy.py

@@ -1,14 +0,0 @@
-from abc import ABC, abstractmethod
-
-from hivemind.proto.runtime_pb2 import ExpertRequest
-
-
-class SpendingPolicyBase(ABC):
-    @abstractmethod
-    def get_points(self, request: ExpertRequest, method_name: str, *args, **kwargs) -> float:
-        pass
-
-
-class NoSpendingPolicy(SpendingPolicyBase):
-    def get_points(self, request: ExpertRequest, method_name: str, *args, **kwargs) -> float:
-        return 0.0

+ 0 - 8
src/petals/src/constants.py

@@ -1,8 +0,0 @@
-PUBLIC_INITIAL_PEERS = [
-    "/dns/bootstrap1.petals.ml/tcp/31337/p2p/QmedTaZXmULqwspJXz44SsPZyTNKxhnnFvYRajfH7MGhCY",
-    "/dns6/bootstrap1.petals.ml/tcp/31337/p2p/QmedTaZXmULqwspJXz44SsPZyTNKxhnnFvYRajfH7MGhCY",
-    "/dns/bootstrap2.petals.ml/tcp/31338/p2p/QmQGTqmM7NKjV6ggU1ZCap8zWiyKR89RViDXiqehSiCpY5",
-    "/dns6/bootstrap2.petals.ml/tcp/31338/p2p/QmQGTqmM7NKjV6ggU1ZCap8zWiyKR89RViDXiqehSiCpY5",
-    "/dns/bootstrap3.petals.ml/tcp/31339/p2p/QmX82nfE57CSkNgyEC7pPMPBzjcFLLJXdHhvp1AXKVPvJD",
-    "/dns6/bootstrap3.petals.ml/tcp/31339/p2p/QmX82nfE57CSkNgyEC7pPMPBzjcFLLJXdHhvp1AXKVPvJD",
-]

+ 0 - 41
src/petals/src/data_structures.py

@@ -1,41 +0,0 @@
-from dataclasses import dataclass
-from enum import Enum
-from typing import Any, Dict
-
-from hivemind import PeerID
-
-ModuleUID = str
-UID_DELIMITER = "."  # delimits parts of one module uid, e.g. "bloom.transformer.h.4.self_attention"
-CHAIN_DELIMITER = " "  # delimits multiple uids in a sequence, e.g. "bloom.layer3 bloom.layer4"
-
-
-class ServerState(Enum):
-    OFFLINE = 0
-    JOINING = 1
-    ONLINE = 2
-
-
-@dataclass
-class ServerInfo:
-    state: ServerState
-    throughput: float
-
-
-@dataclass
-class RemoteModuleInfo:
-    """A remote module that is served by one or more servers"""
-
-    uid: ModuleUID
-    servers: Dict[PeerID, ServerInfo]
-
-
-@dataclass
-class RemoteSpanInfo:
-    """A chain of remote blocks served by one specific remote peer"""
-
-    start: int
-    end: int
-    peer_id: PeerID
-
-
-RPCInfo = Dict[str, Any]

+ 0 - 180
src/petals/src/dht_utils.py

@@ -1,180 +0,0 @@
-"""
-Utilities for declaring and retrieving active model layers using a shared DHT.
-"""
-from __future__ import annotations
-
-import math
-from functools import partial
-from typing import Dict, List, Optional, Sequence, Union
-
-from hivemind.dht import DHT, DHTNode, DHTValue
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
-from hivemind.p2p import PeerID
-from hivemind.utils import DHTExpiration, MPFuture, get_dht_time, get_logger, use_hivemind_log_handler
-
-import petals
-from petals.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ModuleUID, RemoteModuleInfo, ServerInfo, ServerState
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-def declare_active_modules(
-    dht: DHT,
-    uids: Sequence[ModuleUID],
-    expiration_time: DHTExpiration,
-    state: ServerState,
-    throughput: float,
-    wait: bool = True,
-) -> Union[Dict[ModuleUID, bool], MPFuture[Dict[ModuleUID, bool]]]:
-    """
-    Declare that your node serves the specified modules; update timestamps if declared previously
-
-    :param uids: a list of module ids to declare
-    :param wait: if True, awaits for declaration to finish, otherwise runs in background
-    :param throughput: specify your performance in terms of compute throughput
-    :param expiration_time: declated modules will be visible for this many seconds
-    :returns: if wait, returns store status for every key (True = store succeeded, False = store rejected)
-    """
-    if isinstance(uids, str):
-        uids = [uids]
-    if not isinstance(uids, list):
-        uids = list(uids)
-    for uid in uids:
-        assert isinstance(uid, ModuleUID) and UID_DELIMITER in uid and CHAIN_DELIMITER not in uid
-    return dht.run_coroutine(
-        partial(
-            _declare_active_modules,
-            uids=uids,
-            expiration_time=expiration_time,
-            state=state,
-            throughput=throughput,
-        ),
-        return_future=not wait,
-    )
-
-
-async def _declare_active_modules(
-    dht: DHT,
-    node: DHTNode,
-    uids: List[ModuleUID],
-    expiration_time: DHTExpiration,
-    state: ServerState,
-    throughput: float,
-) -> Dict[ModuleUID, bool]:
-    num_workers = len(uids) if dht.num_workers is None else min(len(uids), dht.num_workers)
-    return await node.store_many(
-        keys=uids,
-        subkeys=[dht.peer_id.to_base58()] * len(uids),
-        values=[(state.value, throughput)] * len(uids),
-        expiration_time=expiration_time,
-        num_workers=num_workers,
-    )
-
-
-def get_remote_sequence(
-    dht: DHT,
-    start: int,
-    stop: int,
-    config: petals.DistributedBloomConfig,
-    dht_prefix: Optional[str] = None,
-    return_future: bool = False,
-) -> Union[petals.RemoteSequential, MPFuture]:
-    return RemoteExpertWorker.run_coroutine(
-        _get_remote_sequence(dht, start, stop, config, dht_prefix), return_future=return_future
-    )
-
-
-async def _get_remote_sequence(
-    dht: DHT,
-    start: int,
-    stop: int,
-    config: petals.DistributedBloomConfig,
-    dht_prefix: Optional[str] = None,
-) -> petals.RemoteSequential:
-    uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(start, stop)]
-    p2p = await dht.replicate_p2p()
-    manager = petals.RemoteSequenceManager(dht, uids, p2p)
-    return petals.RemoteSequential(config, dht, dht_prefix, p2p, manager)
-
-
-def get_remote_module(
-    dht: DHT,
-    uid_or_uids: Union[ModuleUID, List[ModuleUID]],
-    config: petals.DistributedBloomConfig,
-    dht_prefix: Optional[str] = None,
-    return_future: bool = False,
-) -> Union[Union[petals.RemoteTransformerBlock, List[petals.RemoteTransformerBlock]], MPFuture]:
-    """
-    :param uid_or_uids: find one or more modules with these ids from across the DHT
-    :param config: model config, usualy taken by .from_pretrained(MODEL_NAME)
-    :param return_future: if False (default), return when finished. Otherwise return MPFuture and run in background.
-    :returns: a list of [RemoteTransformerBlock]
-    """
-    return RemoteExpertWorker.run_coroutine(
-        _get_remote_module(dht, uid_or_uids, config, dht_prefix), return_future=return_future
-    )
-
-
-async def _get_remote_module(
-    dht: DHT,
-    uid_or_uids: Union[ModuleUID, List[ModuleUID]],
-    config: petals.DistributedBloomConfig,
-    dht_prefix: Optional[str] = None,
-) -> Union[petals.RemoteTransformerBlock, List[petals.RemoteTransformerBlock]]:
-    single_uid = isinstance(uid_or_uids, ModuleUID)
-    uids = [uid_or_uids] if single_uid else uid_or_uids
-    p2p = await dht.replicate_p2p()
-    managers = (petals.RemoteSequenceManager(dht, [uid], p2p) for uid in uids)
-    modules = [
-        petals.RemoteTransformerBlock(config, dht, dht_prefix=dht_prefix, p2p=p2p, sequence_manager=m) for m in managers
-    ]
-    return modules[0] if single_uid else modules
-
-
-def get_remote_module_infos(
-    dht: DHT,
-    uid_or_uids: Union[ModuleUID, List[ModuleUID]],
-    expiration_time: Optional[DHTExpiration] = None,
-) -> List[Optional[RemoteModuleInfo]]:
-    single_uid = isinstance(uid_or_uids, ModuleUID)
-    uids = [uid_or_uids] if single_uid else uid_or_uids
-    infos = dht.run_coroutine(
-        partial(_get_remote_module_infos, uids=uids, expiration_time=expiration_time), return_future=False
-    )
-    return infos[0] if single_uid else infos
-
-
-async def _get_remote_module_infos(
-    dht: DHT, node: DHTNode, uids: List[ModuleUID], expiration_time: Optional[DHTExpiration]
-) -> List[Optional[RemoteModuleInfo]]:
-    if expiration_time is None:
-        expiration_time = get_dht_time()
-    num_workers = len(uids) if dht.num_workers is None else min(len(uids), dht.num_workers)
-    found: Dict[ModuleUID, DHTValue] = await node.get_many(uids, expiration_time, num_workers=num_workers)
-
-    modules: List[Optional[RemoteModuleInfo]] = [None] * len(uids)
-    for i, uid in enumerate(uids):
-        metadata = found[uid]
-        if metadata is None or not isinstance(metadata.value, dict):
-            if metadata is not None:
-                logger.error(f"Incorrect metadata for {uid}: {metadata}")
-            continue
-        servers = {}
-        for peer_id, server_info in metadata.value.items():
-            try:
-                peer_id = PeerID.from_base58(peer_id)
-                state, throughput = server_info.value
-                if not (
-                    isinstance(state, int)
-                    and isinstance(throughput, float)
-                    and math.isfinite(throughput)
-                    and throughput >= 0.0
-                ):
-                    raise ValueError(f"Invalid server info: {server_info}")
-                servers[peer_id] = ServerInfo(ServerState(state), throughput)
-            except (TypeError, ValueError) as e:
-                logger.error(f"Incorrect peer entry for uid={uid}, peer_id={peer_id}: {e}")
-        if servers:
-            modules[i] = RemoteModuleInfo(uid, servers)
-    return modules

+ 0 - 0
src/petals/src/server/__init__.py


+ 0 - 85
src/petals/src/server/backend.py

@@ -1,85 +0,0 @@
-"""Code for serving bloom blocks via hivemind-server"""
-from typing import Any, Dict, Optional, Sequence, Tuple
-
-import torch
-from hivemind import BatchTensorDescriptor, use_hivemind_log_handler
-from hivemind.moe.server.module_backend import ModuleBackend
-from hivemind.utils import get_logger
-
-from petals.bloom.from_pretrained import BloomBlock
-from petals.server.cache import MemoryCache
-from petals.server.task_pool import PrioritizedTaskPool
-from petals.utils.misc import is_dummy
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-class TransformerBackend(ModuleBackend):
-    """A wrapper for BloomBlock that can process requests for bloom layer forward, forward_incremental, and backward"""
-
-    def __init__(self, *args, memory_cache: MemoryCache, backend_dtype: Optional[torch.dtype] = None, **kwargs):
-        super().__init__(*args, **kwargs)
-        assert isinstance(self.module, BloomBlock)
-        self.memory_cache = memory_cache
-        for name, param in self.module.named_parameters():
-            assert not param.requires_grad, f"Bloom layer parameters must not accumulate gradients, but {name} does"
-        for name, buf in self.module.named_buffers():
-            assert not buf.requires_grad, f"Bloom layer parameters must not accumulate gradients, but {name} does"
-
-        max_batch_size = self.forward_pool.max_batch_size
-        self.inference_pool = PrioritizedTaskPool(
-            self.inference_step, max_batch_size=max_batch_size, name=f"{self.name}_inference"
-        )
-        self.forward_pool = PrioritizedTaskPool(
-            self.forward, max_batch_size=max_batch_size, name=f"{self.name}_forward"
-        )
-        self.backward_pool = PrioritizedTaskPool(
-            self.backward, max_batch_size=max_batch_size, name=f"{self.name}_backward"
-        )
-        self.dtype = backend_dtype if backend_dtype else self.module.input_layernorm.weight.dtype
-        self.inference_schema = (
-            (
-                *self.args_schema,
-                BatchTensorDescriptor((), dtype=self.dtype),
-                BatchTensorDescriptor((), dtype=torch.int64),
-            ),
-            self.kwargs_schema,
-        )
-
-    def inference_step(self, cache_metadata: torch.IntTensor, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]:
-        with torch.inference_mode():
-            attention_cache_handle = int(cache_metadata[0, 0].item())
-            prefix_length = int(cache_metadata[0, 1].item())
-            (hidden_states, hypo_ids) = inputs
-            assert (
-                hidden_states.ndim == 3
-            ), "expected hidden states to be 3-dimensional: [batch_size, seq_len, hid_size]"
-
-            with self.memory_cache.use_cache(attention_cache_handle) as cache:
-                assert isinstance(self.module, BloomBlock) and cache.shape[0] == 2 and cache.ndim == 5
-                if not is_dummy(hypo_ids):
-                    assert hypo_ids.shape[0] == cache.shape[1]
-                    cache[:, :] = cache[:, hypo_ids]  # in-place reorder cache by hypo ids
-                layer_past = past_k, past_v = cache[0, :, :prefix_length], cache[1, :, :prefix_length]
-                logger.debug(f"Metadata: {cache_metadata}, past_k.shape={past_k.shape}, past_v.shape={past_v.shape}")
-                hidden_states, (new_k, new_v) = self.module.forward(
-                    hidden_states, layer_past=layer_past, use_cache=True
-                )
-
-                # todo remove these asserts once we pass all tests
-                new_length = new_v.shape[1]
-                assert new_length > prefix_length
-                assert new_k.shape[0] == past_k.shape[0] and new_v.shape[0] == past_v.shape[0]
-                assert new_k.shape[1] == new_length and new_v.shape[1] == new_length
-                assert new_k.shape[2:] == past_k.shape[2:] and new_v.shape[2:] == past_v.shape[2:]
-                cache[0, :, prefix_length:new_length, :] = new_k[:, prefix_length:new_length]
-                cache[1, :, prefix_length:new_length, :] = new_v[:, prefix_length:new_length]
-                return (hidden_states,)
-
-    def get_pools(self) -> Sequence[PrioritizedTaskPool]:
-        return self.forward_pool, self.backward_pool, self.inference_pool
-
-    def get_info(self) -> Dict[str, Any]:
-        """Get module parameters and stats. Used by RemoteExpert to check shapes and for DMoE orchestration."""
-        return dict(super().get_info(), inference_schema=self.inference_schema)

+ 0 - 115
src/petals/src/server/block_selection.py

@@ -1,115 +0,0 @@
-from dataclasses import dataclass
-from typing import Dict, List, Optional, Tuple
-
-import numpy as np
-from hivemind import PeerID, get_logger
-
-from petals.data_structures import RemoteModuleInfo, ServerState
-
-__all__ = ["choose_best_blocks", "should_choose_other_blocks"]
-
-logger = get_logger(__file__)
-
-
-@dataclass
-class Span:
-    start: int
-    end: int
-    throughput: float
-
-    @property
-    def length(self):
-        return self.end - self.start
-
-    def move_to(self, new_start: int) -> None:
-        self.start, self.end = new_start, new_start + self.length
-
-
-def _compute_spans(module_infos: List[Optional[RemoteModuleInfo]]) -> Tuple[Dict[PeerID, Span], np.ndarray]:
-    spans = {}
-    throughputs = np.zeros(len(module_infos))
-    for block, module in enumerate(module_infos):
-        if module is None:
-            continue
-
-        # We sort servers here to ensure that we get exactly the same throughputs for a given set of servers.
-        # If the order were not defined, we would get slightly different values due to floating point errors,
-        # which may cause excess block replacements.
-        for peer_id, server in sorted(module.servers.items()):
-            if server.state == ServerState.OFFLINE:
-                continue
-
-            if peer_id in spans:
-                spans[peer_id].start = min(spans[peer_id].start, block)
-                spans[peer_id].end = max(spans[peer_id].start, block + 1)
-            else:
-                spans[peer_id] = Span(start=block, end=block + 1, throughput=server.throughput)
-
-            throughputs[block] += server.throughput
-
-    return spans, throughputs
-
-
-def _choose_best_start(throughputs: np.ndarray, num_blocks: int) -> int:
-    options = ((sorted(throughputs[i : i + num_blocks]), i) for i in range(0, len(throughputs) - num_blocks + 1))
-    return min(options)[-1]
-
-
-def choose_best_blocks(num_blocks: int, module_infos: List[Optional[RemoteModuleInfo]]) -> List[int]:
-    _, throughputs = _compute_spans(module_infos)
-    start = _choose_best_start(throughputs, num_blocks)
-    return list(range(start, start + num_blocks))
-
-
-def should_choose_other_blocks(
-    local_peer_id: PeerID, module_infos: List[Optional[RemoteModuleInfo]], balance_quality: float
-) -> bool:
-    if balance_quality > 1.0:
-        return True  # Forces rebalancing on each check (may be used for debugging purposes)
-
-    spans, throughputs = _compute_spans(module_infos)
-    initial_throughput = throughputs.min()
-    eps = 1e-3
-
-    assert local_peer_id in spans, "Span served by this server is not present in the DHT"
-    local_span = spans[local_peer_id]
-    throughputs[local_span.start : local_span.end] -= local_span.throughput * (1 + eps)
-    # Without (1 + eps) here, we would sometimes subtract a value slightly less than local_span.throughput
-    # due to the floating point error, which would cause excess block replacements.
-    # Also, subtracting local_span.throughput * (1 + eps) makes _choose_best_start() prefer
-    # the previous server position in case of other things being almost equal.
-
-    new_start = _choose_best_start(throughputs, local_span.length)
-    if local_span.start == new_start:
-        return False  # This server is on its best place already
-
-    throughputs[local_span.start : local_span.end] += local_span.throughput * eps
-    local_span.move_to(new_start)
-    throughputs[local_span.start : local_span.end] += local_span.throughput
-
-    moved = True
-    while moved:
-        servers = list(spans.keys())
-        np.random.shuffle(servers)
-
-        moved = False
-        for peer_id in servers:
-            span = spans[peer_id]
-            throughputs[span.start : span.end] -= span.throughput * (1 + eps)
-
-            new_start = _choose_best_start(throughputs, span.length)
-
-            throughputs[span.start : span.end] += span.throughput * eps
-            if span.start != new_start:
-                span.move_to(new_start)
-                moved = True
-            throughputs[span.start : span.end] += span.throughput
-
-    new_throughput = throughputs.min()
-    if new_throughput < initial_throughput or new_throughput < eps:
-        return False
-
-    actual_quality = initial_throughput / new_throughput
-    logger.info(f"Swarm balance quality: {actual_quality * 100:.1f}%")
-
-    return actual_quality < balance_quality - eps

+ 0 - 148
src/petals/src/server/cache.py

@@ -1,148 +0,0 @@
-"""
-A pytorch memory cache that can be allocated by ConnectionHandler (on cpu) and used over multiple calls to Runtime.
-
-For now, the only purpose of this code is to ensure that allocated memory will be deleted properly.
-
-"""
-import asyncio
-import contextlib
-import ctypes
-import multiprocessing as mp
-import os
-import time
-from typing import AsyncContextManager, Dict, Optional, Union
-
-import hivemind
-import torch
-from hivemind import use_hivemind_log_handler
-from hivemind.utils import TensorDescriptor, get_logger
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-Handle = int
-
-
-class MemoryCache:
-    """A shared cache for storing tensors that persist across calls. Main use case: storing past attention KVs"""
-
-    def __init__(self, device: Union[str, torch.device], max_size_bytes: Optional[int], alloc_timeout: float):
-        self.max_size_bytes = max_size_bytes if max_size_bytes is not None else (2**64 - 1)
-        self.alloc_timeout = alloc_timeout
-        self.device = device
-        self._lock_metadata, self.size_decreased_event = mp.Lock(), mp.Event()
-        self._current_size = mp.Value(ctypes.c_int64, 0, lock=False)
-        self._handle_counter = mp.Value(ctypes.c_int64, 0, lock=False)
-        self._active_handles: Optional[Dict[Handle, TensorDescriptor]] = None
-        self._allocated_tensors: Optional[Dict[Handle, torch.Tensor]] = None
-        self.runtime_pid = os.getpid()
-
-        self._pipe_recv, self._pipe_send = mp.Pipe(duplex=False)  # any ConnectionHandler -> runtime
-        self._pending_messages = mp.Value(ctypes.c_int64, 0, lock=False)
-        self._lock_acquire_memory = mp.Lock()
-        self._memory_freed_event = mp.Event()
-
-    @property
-    def current_size_bytes(self) -> int:
-        return self._current_size.value
-
-    @current_size_bytes.setter
-    def current_size_bytes(self, value: int):
-        self._current_size.value = value
-
-    @property
-    def handle_counter(self) -> int:
-        return self._handle_counter.value
-
-    @handle_counter.setter
-    def handle_counter(self, value: int):
-        self._handle_counter.value = value
-
-    @contextlib.asynccontextmanager
-    async def allocate_cache(self, descr: TensorDescriptor) -> AsyncContextManager[Handle]:
-        """
-        Create a handle that is associated with buffers on unique device. If cache full, raises AllocationFailed.
-
-        :param descr: allocate a tensor of this size, dtype, etc
-
-        :note: This function should be called by connection handlers, it can be called concurrently from multiple processes.
-        Furthermore, it can be called concurrently with at most one use_cache call in runtime.
-        """
-        assert os.getpid() != self.runtime_pid, "must be called by a ConnectionHandler, not runtime"
-        assert descr.device is None and descr
-        allocated_handle = None
-        allocated_size_bytes = descr.numel() * torch.finfo(descr.dtype).bits // 8
-        loop = asyncio.get_event_loop()
-        try:
-            async with hivemind.utils.enter_asynchronously(self._lock_acquire_memory):
-                if self.current_size_bytes + allocated_size_bytes > self.max_size_bytes:
-                    await loop.run_in_executor(
-                        None, self._wait_until_available, allocated_size_bytes, timeout=self.alloc_timeout
-                    )
-                async with hivemind.utils.enter_asynchronously(self._lock_metadata):
-                    allocated_handle = int(self.handle_counter)
-                    self.current_size_bytes += allocated_size_bytes
-                    self.handle_counter += 1  # note: this will eventually overflow and it is okay
-                    self._pending_messages.value += 1
-                    self._pipe_send.send((allocated_handle, descr))
-
-            yield allocated_handle
-        finally:
-            if allocated_handle is not None:
-                async with hivemind.utils.enter_asynchronously(self._lock_metadata):
-                    self._pending_messages.value += 1
-                    self._pipe_send.send((allocated_handle, None))  # signal runtime to free that handle
-                    self.current_size_bytes -= allocated_size_bytes
-                self._memory_freed_event.set()
-
-    def _wait_until_available(self, allocated_size: int, timeout: Optional[float] = None):
-        # note: this function should only be called inside _lock_acquire_memory!
-        if allocated_size > self.max_size_bytes:
-            raise AllocationFailed(
-                f"Could not allocate {allocated_size} bytes, max cache size = {self.max_size_bytes} bytes"
-            )
-        deadline = None if timeout is None else time.perf_counter() + timeout
-        while self.current_size_bytes + allocated_size > self.max_size_bytes:
-            remaining_time = deadline - time.perf_counter() if timeout is not None else None
-            if not self._memory_freed_event.wait(remaining_time):
-                raise AllocationFailed(
-                    f"Server's attention cache is full, failed to allocate {allocated_size} bytes in {timeout} seconds"
-                )
-            self._memory_freed_event.clear()
-
-    @contextlib.contextmanager
-    def use_cache(self, handle: Handle) -> torch.Tensor:
-        """
-        Return a tensor that was previously allocated with try_allocate_cache,
-
-        :note: This method is called by ExpertBackend in runtime: a single process with NO process parallelism.
-        However, runtime may call use_cache concurrently with one or more connection handlers calling allocate_cache
-        """
-        assert os.getpid() == self.runtime_pid
-        # note: this specific function is not concurrent, so you can safely allocate/offload/defragment data here
-
-        with self._lock_metadata:
-            if self._allocated_tensors is None:
-                self._allocated_tensors = {}
-
-            # read creation/deletion requests from connection handlers
-            for i in range(int(self._pending_messages.value)):
-                recv_handle, recv_data = self._pipe_recv.recv()
-                self._pending_messages.value -= 1
-                if isinstance(recv_data, TensorDescriptor):
-                    self._allocated_tensors[recv_handle] = recv_data.make_zeros(device=self.device)
-                elif recv_data is None:
-                    if recv_handle not in self._allocated_tensors:
-                        logger.warning(
-                            f"Sanity check failed: asked to delete handle {recv_handle}, but there is no such handle"
-                        )
-                    self._allocated_tensors.pop(recv_handle, None)
-                else:
-                    logger.error(f"MemoryCache pipe received unexpected message: {recv_data}")
-
-        assert handle in self._allocated_tensors, f"Sanity check failed: no such handle ({handle})"
-        yield self._allocated_tensors[handle]
-
-
-class AllocationFailed(Exception):
-    pass

+ 0 - 470
src/petals/src/server/handler.py

@@ -1,470 +0,0 @@
-import asyncio
-import contextlib
-from typing import AsyncIterator, Dict, Iterable, List, Sequence, Tuple, Union
-
-import torch
-from async_timeout import timeout
-from hivemind import (
-    DHT,
-    MSGPackSerializer,
-    P2PContext,
-    TensorDescriptor,
-    deserialize_tensor_stream,
-    deserialize_torch_tensor,
-    nested_flatten,
-    serialize_torch_tensor,
-)
-from hivemind.moe.server.connection_handler import ConnectionHandler
-from hivemind.p2p.p2p_daemon import DEFAULT_MAX_MSG_SIZE
-from hivemind.proto import runtime_pb2
-from hivemind.utils.asyncio import amap_in_executor, anext, as_aiter
-from hivemind.utils.logging import get_logger
-from hivemind.utils.streaming import split_for_streaming
-
-from petals.data_structures import CHAIN_DELIMITER, ModuleUID
-from petals.server.backend import TransformerBackend
-from petals.server.task_pool import PrioritizedTaskPool
-from petals.server.task_prioritizer import DummyTaskPrioritizer, TaskPrioritizerBase
-from petals.utils.misc import DUMMY, is_dummy
-
-logger = get_logger(__file__)
-
-
-class TransformerConnectionHandler(ConnectionHandler):
-    """Handles three request types: forward, backward and forward-incremental (inference)"""
-
-    module_backends: Dict[ModuleUID, TransformerBackend]
-
-    def __init__(
-        self,
-        dht: DHT,
-        module_backends: Dict[str, TransformerBackend],
-        *,
-        inference_max_length: int,
-        request_timeout: float,
-        session_timeout: float,
-        step_timeout: float,
-        task_prioritizer: TaskPrioritizerBase = DummyTaskPrioritizer(),
-    ):
-        super().__init__(dht, module_backends)
-        for module_backend in self.module_backends.values():
-            assert isinstance(module_backend, TransformerBackend)
-        self.inference_max_length = inference_max_length
-        self.request_timeout = request_timeout
-        self.session_timeout, self.step_timeout = session_timeout, step_timeout
-        self._prioritizer = task_prioritizer
-
-    async def _gather_inputs(
-        self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext
-    ) -> Tuple[str, List[torch.Tensor], Dict]:
-        block_uid, metadata = None, None
-
-        def _unpack(req: runtime_pb2.ExpertRequest) -> Iterable[runtime_pb2.Tensor]:
-            nonlocal block_uid, metadata
-
-            if block_uid is None:
-                block_uid = req.uid
-            elif block_uid != req.uid:
-                raise ValueError("Block uids differ in one request")
-
-            if metadata is None:
-                metadata = MSGPackSerializer.loads(req.metadata) if req.metadata else {}
-
-            return req.tensors
-
-        tensors_stream = amap_in_executor(_unpack, requests)
-        inputs = await deserialize_tensor_stream(tensors_stream)
-        assert isinstance(block_uid, str) and isinstance(metadata, dict)
-        return block_uid, inputs, metadata
-
-    async def rpc_inference(
-        self,
-        requests: AsyncIterator[runtime_pb2.ExpertRequest],
-        context: P2PContext,
-    ) -> AsyncIterator[runtime_pb2.ExpertRequest]:
-        """Compute a single step of inference using attention cache; update attention cache accordingly."""
-
-        async with timeout(self.session_timeout):
-            request = await asyncio.wait_for(anext(requests), self.step_timeout)
-            requested_uids = self._check_uids(request.uid)
-            self._log_request("rpc_inference.open", requested_uids, context)
-            try:
-                metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {}
-                requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
-                max_length = metadata.get("max_length")
-                points = metadata.get("points", 0)
-
-                if not requested_uids:
-                    raise ValueError("User must specify at least one block for inference, but got none")
-                assert isinstance(
-                    max_length, int
-                ), f"rpc_inference metadata must contain int max_length, got {max_length}"
-                assert isinstance(
-                    points, (float, int)
-                ), f"rpc_inference should have number of points as a number or None, got {points}"
-                if not 0 <= max_length <= self.inference_max_length:
-                    raise ValueError(
-                        f"Cannot allocate KV cache for {max_length} tokens, max = {self.inference_max_length}"
-                    )
-
-                point_per_piece = points / max_length if max_length > 0 else 0.0
-                batch_size = request.tensors[0].size[0] if request.tensors else 1
-
-                cache_metadata = torch.tensor(
-                    [[-1, -1] for _ in range(batch_size)], dtype=torch.int64
-                )  # [cache_handle, prefix_length]
-                prefix_length = 0
-
-                async with self._allocate_caches(requested_backends, batch_size, max_length) as cache_handles:
-                    assert len(cache_handles) == len(requested_backends)
-                    while request.tensors:  # iterate while user is willing to supply tensors
-                        hidden_states, prompts, hypo_ids = [
-                            deserialize_torch_tensor(tensor) for tensor in request.tensors
-                        ]
-
-                        # Cast inputs to backend dtype
-                        hidden_states = hidden_states.to(requested_backends[0].dtype)
-                        assert hypo_ids.dtype == torch.int64, f"hypo ids must be int64, got {hypo_ids.dtype}"
-
-                        # parse deep prompts (optional argument)
-                        if prompts is None or is_dummy(prompts) or is_dummy(prompts):
-                            prompts = [DUMMY] * len(requested_backends)
-                        else:
-                            prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)]
-
-                        if not (len(requested_backends) == len(prompts)):
-                            raise ValueError(f"Received {len(prompts)} prompts for {len(requested_backends)} backends")
-
-                        length_increment = hidden_states.shape[1]  # how many tokens are added this step (in each seq)
-                        if prefix_length + length_increment > max_length:
-                            raise ValueError(
-                                f"Maximum length exceeded: prefix {prefix_length} + current {length_increment}"
-                                f" exceeds pre-allocated maximum {max_length}"
-                            )
-
-                        # run request tensors through all requested modules, update caches
-                        for backend, prompt, cache_handle in zip(requested_backends, prompts, cache_handles):
-                            if not is_dummy(prompt):
-                                hidden_states[:, : prompt.shape[1]] += prompt
-
-                            cache_metadata[:, 0], cache_metadata[:, 1] = cache_handle, prefix_length
-                            assert isinstance(
-                                hidden_states, torch.Tensor
-                            ), f"hidden states must be tensor, got {type(hidden_states)}"
-                            assert (
-                                hidden_states.ndim == 3
-                            ), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states"
-                            assert isinstance(
-                                backend.inference_pool, PrioritizedTaskPool
-                            ), "petals support only prioritized pools"
-                            priority = self._prioritizer.prioritize(
-                                cache_metadata,
-                                hidden_states,
-                                hypo_ids,
-                                points=point_per_piece / len(requested_backends),
-                                backend=backend,
-                                type="inference",
-                            )
-                            (hidden_states,) = await backend.inference_pool.submit_task(
-                                cache_metadata, hidden_states, hypo_ids, priority=priority
-                            )
-
-                        # serialize and send last layer outputs
-                        yield runtime_pb2.ExpertResponse(
-                            tensors=[
-                                serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
-                                for result, proto in zip(
-                                    (hidden_states,), nested_flatten(requested_backends[-1].outputs_schema)
-                                )
-                            ]
-                        )
-
-                        # prepare for next step
-                        prefix_length += hidden_states.shape[1]
-                        request = await asyncio.wait_for(anext(requests), self.step_timeout)
-            finally:
-                self._log_request("rpc_inference.close", requested_uids, context)
-
-    async def rpc_forward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse:
-        async with timeout(self.request_timeout):
-            # Parse request and prepare backends
-            flat_inputs = [deserialize_torch_tensor(tensor) for tensor in request.tensors]
-            requested_uids = self._check_uids(request.uid)
-            self._log_request("rpc_forward", requested_uids, context)
-
-            requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
-            metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {}
-            points = metadata.get("points", 0)
-            assert isinstance(
-                points, (float, int)
-            ), f"rpc_forward should have number of points as number or None, got {points}"
-
-            hidden_states = await _rpc_forward(
-                *flat_inputs, requested_backends=requested_backends, prioritizer=self._prioritizer, points=points
-            )
-            assert isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3
-
-            # Serialize output and respond to client
-            return runtime_pb2.ExpertResponse(
-                tensors=[
-                    serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
-                    for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema))
-                ]
-            )
-
-    async def rpc_forward_stream(
-        self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext
-    ) -> AsyncIterator[runtime_pb2.ExpertRequest]:
-        async with timeout(self.request_timeout):
-            # Parse requests and prepare backends
-            uid_str, flat_inputs, metadata = await self._gather_inputs(requests, context)
-            requested_uids = self._check_uids(uid_str)
-            self._log_request("rpc_forward_stream", requested_uids, context)
-
-            requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
-            points = metadata.get("points", 0)
-            assert isinstance(
-                points, (float, int)
-            ), f"rpc_forward_stream should have number of points as number or None, got {points}"
-
-            hidden_states = await _rpc_forward(
-                *flat_inputs, requested_backends=requested_backends, prioritizer=self._prioritizer, points=points
-            )
-            assert (
-                isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3
-            ), "hidden_states must be a 3d tensor"
-
-            # Serialize the overall output
-            serialized_output = [
-                serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
-                for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema))
-            ]
-
-            # Split the serialized_output for streaming and respond to client
-            output_split = [
-                part for tensor in serialized_output for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)
-            ]
-            async for part in as_aiter(*output_split):
-                yield runtime_pb2.ExpertResponse(tensors=[part])
-
-    async def rpc_backward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse:
-        async with timeout(self.request_timeout):
-            # Parse requests and prepare backends
-            flat_tensors = [deserialize_torch_tensor(tensor) for tensor in request.tensors]
-            requested_uids = self._check_uids(request.uid)
-            self._log_request("rpc_backward", requested_uids, context)
-
-            requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
-            metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {}
-            points = metadata.get("points", 0)
-            assert isinstance(
-                points, (float, int)
-            ), f"rpc_backward should have number of points as number or None, got {points}"
-
-            grads = await _rpc_backward(
-                *flat_tensors, requested_backends=requested_backends, prioritizer=self._prioritizer, points=points
-            )
-
-            # Modify grad_inputs_schema to support grad_prompts
-            assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2)  # TODO generalize
-
-            grad_inputs_schema_with_prompts = (
-                requested_backends[0].args_schema * len(grads),
-                requested_backends[0].kwargs_schema,
-            )  # TODO generalize
-
-            # Serialize the overall grad_input and respond
-            return runtime_pb2.ExpertResponse(
-                tensors=[
-                    serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
-                    for result, proto in zip(grads, nested_flatten(grad_inputs_schema_with_prompts))
-                ]
-            )
-
-    async def rpc_backward_stream(
-        self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext
-    ) -> AsyncIterator[runtime_pb2.ExpertResponse]:
-        async with timeout(self.request_timeout):
-            uids_header, flat_tensors, metadata = await self._gather_inputs(requests, context)
-            requested_uids = self._check_uids(uids_header)
-            self._log_request("rpc_backward_stream", requested_uids, context)
-
-            requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
-            points = metadata.get("points", 0)
-            assert isinstance(
-                points, (float, int)
-            ), f"rpc_backward_stream should have number of points as number or None, got {points}"
-
-            grads = await _rpc_backward(
-                *flat_tensors, requested_backends=requested_backends, prioritizer=self._prioritizer, points=points
-            )
-
-            # Modify grad_inputs_schema to support grad_prompts
-            assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2)  # TODO generalize
-            grad_inputs_schema_with_prompts = (
-                requested_backends[0].args_schema * len(grads),
-                requested_backends[0].kwargs_schema,
-            )  # TODO generalize
-
-            # Serialize the overall grad_inputs
-            serialized_grad_inputs = [
-                serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
-                for result, proto in zip(grads, nested_flatten(grad_inputs_schema_with_prompts))
-            ]
-            # Split the serialized_grad_inputs for streaming and respond
-            output_split = [
-                part for tensor in serialized_grad_inputs for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)
-            ]
-
-            async for part in as_aiter(*output_split):
-                yield runtime_pb2.ExpertResponse(tensors=[part])
-
-    def _check_uids(self, uids: str) -> Sequence[ModuleUID]:
-        """Check that the first request to rpc_inference is valid"""
-        uids = (uids or "").split(CHAIN_DELIMITER)
-        if not uids:
-            raise RuntimeError("User did not provide any uids")
-        for uid in uids:
-            if uid not in self.module_backends:
-                raise RuntimeError(f"Remote peer does not serve {uid}")
-        return tuple(uids)
-
-    @contextlib.asynccontextmanager
-    async def _allocate_caches(
-        self, backends: Sequence[TransformerBackend], batch_size: int, max_length: int
-    ) -> Sequence[int]:
-        """Allocate memory caches for each transformer block, return cache handles"""
-        async with contextlib.AsyncExitStack() as stack:
-            handles = []
-            total_size = 0
-            backend = None
-            for backend in backends:
-                num_heads = backend.module.self_attention.num_heads
-                head_dim = backend.module.self_attention.head_dim
-
-                descr = TensorDescriptor(size=(2, batch_size, max_length, num_heads, head_dim), dtype=backend.dtype)
-                # [key_or_value, batch_size, max_length, num_heads, head_dim]
-
-                handles.append(await stack.enter_async_context(backend.memory_cache.allocate_cache(descr)))
-                total_size += descr.numel() * torch.finfo(descr.dtype).bits // 8
-
-            gib = 1024**3
-            if backend is not None:
-                cur_size = backend.memory_cache.current_size_bytes
-                max_size = backend.memory_cache.max_size_bytes
-                friendly_max_size = f"{max_size / gib:.2f}" if max_size != 2**64 - 1 else "inf"
-                cache_stats = f"used {cur_size / gib:.2f}/{friendly_max_size} GiB ({cur_size / max_size * 100:.1f}%)"
-            else:
-                cache_stats = f"cache stats n/a"
-            logger.info(f"rpc_inference.alloc(total_size={total_size / gib:.2f} GiB), {cache_stats}")
-
-            yield handles
-
-    def _log_request(self, method: str, uids: List[ModuleUID], context: P2PContext) -> None:
-        friendly_uids = [uid.split(".")[-1] for uid in uids if "." in uid]
-        friendly_uids = [int(uid) for uid in friendly_uids if uid.isdigit()]
-        friendly_uids = f"{min(friendly_uids)}:{max(friendly_uids) + 1}" if friendly_uids else uids
-
-        friendly_remote_id = "..." + str(context.remote_id)[-6:]
-
-        logger.info(f"{method}(blocks={friendly_uids}, remote_peer={friendly_remote_id})")
-
-
-async def _rpc_forward(
-    *flat_tensors: torch.Tensor,
-    requested_backends: Sequence[TransformerBackend],
-    prioritizer: TaskPrioritizerBase,
-    points: int = 0,
-) -> torch.Tensor:
-    """
-    Run forward pass on deserialized inputs and prompts, used by rpc_forward and rpc_forward_stream
-
-    :param flat_tensors: a list of tensors that includes first layer inputs, optional prompts and extra tensors
-    :note: some input tensors can be missing, in which case they will be replaced with dummy tensors (see is_dummy)
-    :param requested_backends: a sequence of transformer blocks in the same order as they appear in forward pass
-    :returns: hidden states after the last layer [batch_size, seq_length, hid_size]
-    """
-    hidden_states, prompts = flat_tensors
-    dtype = requested_backends[0].dtype
-    # check parse input tensors and cast dtypes
-    hidden_states = hidden_states.to(dtype)
-    assert hidden_states.ndim == 3
-    if prompts is None or is_dummy(prompts):
-        prompts = [DUMMY] * len(requested_backends)
-    else:
-        prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)]
-
-    # Run a chain of requested backends
-    for backend, prompt in zip(requested_backends, prompts):
-        if not is_dummy(prompt):
-            hidden_states[:, : prompt.shape[1]] += prompt
-
-        assert isinstance(backend.inference_pool, PrioritizedTaskPool), "petals support only prioritized pools"
-        priority = prioritizer.prioritize(
-            hidden_states, points=points / len(requested_backends), backend=backend, type="forward"
-        )
-        (hidden_states,) = await backend.forward_pool.submit_task(
-            hidden_states,
-            priority=priority,
-        )
-        assert isinstance(hidden_states, torch.Tensor)
-        assert (
-            hidden_states.ndim == 3
-        ), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states"
-
-    # Serialize the overall output
-    return hidden_states
-
-
-async def _rpc_backward(
-    *flat_tensors: torch.Tensor,
-    requested_backends: Sequence[TransformerBackend],
-    prioritizer: TaskPrioritizerBase,
-    points: int = 0,
-) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
-    inputs, grad_outputs, prompts = flat_tensors
-    # Cast inputs & grad outputs to backend dtype
-    inputs = inputs.to(requested_backends[0].dtype)
-    grad_outputs = grad_outputs.to(requested_backends[-1].dtype)
-
-    if prompts is None or is_dummy(prompts):
-        prompts = [DUMMY] * len(requested_backends)
-    else:
-        prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)]
-
-    # Run a forward chain to collect intermediate inputs
-    # Note that we do not forward for the last module since we do not need its output
-    inter_inputs = []
-    for backend, prompt in zip(requested_backends[:-1], prompts[:-1]):
-        assert inputs.ndim == 3, f"inputs to {type(backend)} must be a single 3d tensor of hidden states"
-        if not is_dummy(prompt):
-            inputs[:, : prompt.shape[1]] += prompt
-        inter_inputs.append(inputs)
-        assert isinstance(backend.inference_pool, PrioritizedTaskPool), "petals support only prioritized pools"
-        priority = prioritizer.prioritize(
-            inputs, points=points / len(requested_backends), backend=backend, type="forward_in_backward"
-        )
-        (inputs,) = await backend.forward_pool.submit_task(inputs, priority=priority)
-
-        assert isinstance(inputs, torch.Tensor)
-
-    if not is_dummy(prompts[-1]):
-        inputs[:, : prompts[-1].shape[1]] += prompts[-1]
-    inter_inputs.append(inputs)
-
-    assert len(inter_inputs) == len(prompts) == len(requested_backends), "internal shape error during backward"
-    grad_prompts_reversed = []
-    # Run a chain of requested backends
-    for inp, prompt, backend in zip(*map(reversed, (inter_inputs, prompts, requested_backends))):
-        assert isinstance(backend.inference_pool, PrioritizedTaskPool), "petals support only prioritized pools"
-        priority = prioritizer.prioritize(
-            inp, grad_outputs, points=points / len(requested_backends), backend=backend, type="backward"
-        )
-        (grad_outputs,) = await backend.backward_pool.submit_task(inp, grad_outputs, priority=priority)
-
-        assert isinstance(grad_outputs, torch.Tensor)
-        if not is_dummy(prompt):
-            grad_prompts_reversed.append(grad_outputs[:, : prompt.shape[1]].unsqueeze(0))
-
-    grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else DUMMY
-    return [grad_outputs] if is_dummy(grad_prompts) else [grad_outputs, grad_prompts]  # TODO un-duct-tape

+ 0 - 198
src/petals/src/server/runtime.py

@@ -1,198 +0,0 @@
-import multiprocessing as mp
-import multiprocessing.pool
-import threading
-from collections import defaultdict
-from itertools import chain
-from queue import SimpleQueue
-from selectors import EVENT_READ, DefaultSelector
-from statistics import mean
-from time import time
-from typing import Dict, NamedTuple, Optional
-
-import torch
-from hivemind.moe.server.module_backend import ModuleBackend
-from hivemind.utils import get_logger
-from prefetch_generator import BackgroundGenerator
-
-logger = get_logger(__name__)
-
-
-class Runtime(threading.Thread):
-    """
-    A group of processes that processes incoming requests for multiple module backends on a shared device.
-    Runtime is usually created and managed by Server, humans need not apply.
-
-    For debugging, you can start runtime manually with .start() or .run()
-
-    >>> module_backends = {'block_uid': ModuleBackend(**kwargs)}
-    >>> runtime = Runtime(module_backends)
-    >>> runtime.start()  # start runtime in background thread. To start in current thread, use runtime.run()
-    >>> runtime.ready.wait()  # await for runtime to load all blocks on device and create request pools
-    >>> future = runtime.module_backends['block_uid'].forward_pool.submit_task(*module_inputs)
-    >>> print("Returned:", future.result())
-    >>> runtime.shutdown()
-
-    :param module_backends: a dict [block uid -> ModuleBackend]
-    :param prefetch_batches: form up to this many batches in advance
-    :param sender_threads: dispatches outputs from finished batches using this many asynchronous threads
-    :param device: if specified, moves all blocks and data to this device via .to(device=device).
-      If you want to manually specify devices for each block (in their forward pass), leave device=None (default)
-
-    :param stats_report_interval: interval to collect and log statistics about runtime performance
-    """
-
-    SHUTDOWN_TRIGGER = "RUNTIME SHUTDOWN TRIGGERED"
-
-    def __init__(
-        self,
-        module_backends: Dict[str, ModuleBackend],
-        prefetch_batches: int = 1,
-        sender_threads: int = 1,
-        device: torch.device = None,
-        stats_report_interval: Optional[int] = None,
-    ):
-        super().__init__()
-        self.module_backends = module_backends
-        self.pools = tuple(chain(*(backend.get_pools() for backend in module_backends.values())))
-        self.device, self.prefetch_batches, self.sender_threads = device, prefetch_batches, sender_threads
-        self.shutdown_recv, self.shutdown_send = mp.Pipe(duplex=False)
-        self.shutdown_trigger = mp.Event()
-        self.ready = mp.Event()  # event is set iff server is currently running and ready to accept batches
-
-        self.stats_report_interval = stats_report_interval
-        if self.stats_report_interval is not None:
-            self.stats_reporter = StatsReporter(self.stats_report_interval)
-
-    def run(self):
-        for pool in self.pools:
-            if not pool.is_alive():
-                pool.start()
-        if self.device is not None:
-            for backend in self.module_backends.values():
-                backend.module.to(self.device)
-
-        with mp.pool.ThreadPool(self.sender_threads) as output_sender_pool:
-            try:
-                self.ready.set()
-                if self.stats_report_interval is not None:
-                    self.stats_reporter.start()
-                logger.info("Started")
-
-                batch_iterator = self.iterate_minibatches_from_pools()
-                if self.prefetch_batches > 0:
-                    batch_iterator = BackgroundGenerator(batch_iterator, self.prefetch_batches)
-
-                for pool, batch_index, batch in batch_iterator:
-                    logger.debug(f"Processing batch {batch_index} from pool {pool.name}")
-
-                    start = time()
-                    try:
-                        outputs = pool.process_func(*batch)
-                        output_sender_pool.apply_async(pool.send_outputs_from_runtime, args=[batch_index, outputs])
-
-                        batch_processing_time = time() - start
-
-                        batch_size = outputs[0].size(0)
-                        logger.debug(f"Pool {pool.name}: batch {batch_index} processed, size {batch_size}")
-
-                        if self.stats_report_interval is not None:
-                            self.stats_reporter.report_stats(pool.name, batch_size, batch_processing_time)
-
-                    except KeyboardInterrupt:
-                        raise
-                    except BaseException as exception:
-                        logger.exception(f"Caught {exception}, attempting to recover")
-                        output_sender_pool.apply_async(pool.send_exception_from_runtime, args=[batch_index, exception])
-
-            finally:
-                if not self.shutdown_trigger.is_set():
-                    self.shutdown()
-
-    def shutdown(self):
-        """Gracefully terminate a running runtime."""
-        logger.info("Shutting down")
-        self.ready.clear()
-
-        if self.stats_report_interval is not None:
-            self.stats_reporter.stop.set()
-            self.stats_reporter.join()
-
-        logger.debug("Terminating pools")
-        for pool in self.pools:
-            if pool.is_alive():
-                pool.shutdown()
-        logger.debug("Pools terminated")
-
-        # trigger background thread to shutdown
-        self.shutdown_send.send(self.SHUTDOWN_TRIGGER)
-        self.shutdown_trigger.set()
-
-    def iterate_minibatches_from_pools(self, timeout=None):
-        """
-        Chooses pool according to priority, then copies exposed batch and frees the buffer
-        """
-        with DefaultSelector() as selector:
-            for pool in self.pools:
-                selector.register(pool.batch_receiver, EVENT_READ, pool)
-            selector.register(self.shutdown_recv, EVENT_READ, self.SHUTDOWN_TRIGGER)
-
-            while True:
-                # wait until at least one batch_receiver becomes available
-                logger.debug("Waiting for inputs from task pools")
-                ready_fds = selector.select()
-                ready_objects = {key.data for (key, events) in ready_fds}
-                if self.SHUTDOWN_TRIGGER in ready_objects:
-                    break  # someone asked us to shutdown, break from the loop
-
-                logger.debug("Choosing the pool with first priority")
-
-                pool = min(ready_objects, key=lambda pool: pool.priority)
-
-                logger.debug(f"Loading batch from {pool.name}")
-                batch_index, batch_tensors = pool.load_batch_to_runtime(timeout, self.device)
-                logger.debug(f"Loaded batch from {pool.name}")
-                yield pool, batch_index, batch_tensors
-
-
-BatchStats = NamedTuple("BatchStats", (("batch_size", int), ("processing_time", float)))
-
-
-class StatsReporter(threading.Thread):
-    def __init__(self, report_interval: int):
-        super().__init__()
-        self.report_interval = report_interval
-        self.stop = threading.Event()
-        self.stats_queue = SimpleQueue()
-
-    def run(self):
-        while not self.stop.wait(self.report_interval):
-            pool_batch_stats = defaultdict(list)
-            while not self.stats_queue.empty():
-                pool_uid, batch_stats = self.stats_queue.get()
-                pool_batch_stats[pool_uid].append(batch_stats)
-
-            total_processed_batches = sum(len(pool_stats) for pool_stats in pool_batch_stats.values())
-            logger.info(f"Processed {total_processed_batches} batches in last {self.report_interval} seconds:")
-            for pool_uid, pool_stats in pool_batch_stats.items():
-                total_batches = len(pool_stats)
-                total_examples = sum(batch_stats.batch_size for batch_stats in pool_stats)
-                avg_batch_size = mean(batch_stats.batch_size for batch_stats in pool_stats)
-                total_time = sum(batch_stats.processing_time for batch_stats in pool_stats)
-                batches_to_time = total_batches / total_time
-                batch_performance = f"{batches_to_time:.2f} " + ("batches/s" if batches_to_time > 1 else "s/batch")
-
-                examples_to_time = total_examples / total_time
-                example_performance = f"{examples_to_time:.2f} " + (
-                    "examples/s" if examples_to_time > 1 else "s/example"
-                )
-
-                logger.info(
-                    f"{pool_uid}: "
-                    f"{total_batches} batches ({batch_performance}), "
-                    f"{total_examples} examples ({example_performance}), "
-                    f"avg batch size {avg_batch_size:.2f}"
-                )
-
-    def report_stats(self, pool_uid, batch_size, processing_time):
-        batch_stats = BatchStats(batch_size, processing_time)
-        self.stats_queue.put_nowait((pool_uid, batch_stats))

+ 0 - 499
src/petals/src/server/server.py

@@ -1,499 +0,0 @@
-from __future__ import annotations
-
-import gc
-import multiprocessing as mp
-import random
-import threading
-import time
-from typing import Dict, List, Optional, Union
-
-import numpy as np
-import psutil
-import torch
-from hivemind import DHT, MAX_DHT_TIME_DISCREPANCY_SECONDS, BatchTensorDescriptor, get_dht_time
-from hivemind.moe.server.layers import add_custom_models_from_file
-from hivemind.moe.server.runtime import Runtime
-from hivemind.proto.runtime_pb2 import CompressionType
-from hivemind.utils.logging import get_logger, use_hivemind_log_handler
-
-from petals import BloomConfig, declare_active_modules
-from petals.bloom.from_pretrained import DTYPE_MAP, load_pretrained_block
-from petals.constants import PUBLIC_INITIAL_PEERS
-from petals.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ServerState
-from petals.dht_utils import get_remote_module_infos
-from petals.server import block_selection
-from petals.server.backend import TransformerBackend
-from petals.server.cache import MemoryCache
-from petals.server.handler import TransformerConnectionHandler
-from petals.server.throughput import get_host_throughput
-from petals.utils.convert_8bit import replace_8bit_linear
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-class Server:
-    """
-    Runs ModuleContainer, periodically checks that the network is balanced,
-    restarts the ModuleContainer with other layers if the imbalance is significant
-    """
-
-    def __init__(
-        self,
-        *,
-        initial_peers: List[str],
-        prefix: Optional[str],
-        converted_model_name_or_path: str,
-        throughput: Union[float, str],
-        num_blocks: Optional[int] = None,
-        block_indices: Optional[str] = None,
-        num_handlers: int = 8,
-        min_batch_size: int = 1,
-        max_batch_size: int = 2048,
-        inference_max_length: int = 2048,
-        torch_dtype: str = "auto",
-        revision: str = "main",
-        cache_dir: Optional[str] = None,
-        attn_cache_size: Optional[int] = None,
-        alloc_timeout: float = 60,
-        device: Optional[Union[str, torch.device]] = None,
-        compression=CompressionType.NONE,
-        stats_report_interval: Optional[int] = None,
-        custom_module_path=None,
-        update_period: float = 30,
-        expiration: Optional[float] = None,
-        request_timeout: float = 3 * 60,
-        session_timeout: float = 30 * 60,
-        step_timeout: float = 5 * 60,
-        prefetch_batches: int = 1,
-        sender_threads: int = 1,
-        balance_quality: float = 0.75,
-        mean_balance_check_period: float = 60,
-        mean_block_selection_delay: float = 0.5,
-        use_auth_token: Optional[str] = None,
-        load_in_8bit: bool = False,
-        **kwargs,
-    ):
-        """Create a server with one or more bloom blocks. See run_server.py for documentation."""
-
-        self.converted_model_name_or_path = converted_model_name_or_path
-        self.num_handlers = num_handlers
-        self.min_batch_size, self.max_batch_size = min_batch_size, max_batch_size
-        self.inference_max_length = inference_max_length
-        self.cache_dir = cache_dir
-        self.attn_cache_size = attn_cache_size
-        self.compression = compression
-        self.stats_report_interval, self.update_period = stats_report_interval, update_period
-        self.prefetch_batches, self.sender_threads = prefetch_batches, sender_threads
-        self.use_auth_token = use_auth_token
-        self.load_in_8bit = load_in_8bit
-
-        if custom_module_path is not None:
-            add_custom_models_from_file(custom_module_path)
-
-        if prefix is None:
-            prefix = converted_model_name_or_path
-            assert UID_DELIMITER not in prefix and CHAIN_DELIMITER not in prefix, (
-                f"Cannot use model name as prefix (contains '{UID_DELIMITER}' or '{CHAIN_DELIMITER}'); "
-                f"Please specify --prefix manually when starting a server"
-            )
-            logger.info(f"Automatic dht prefix: {prefix}")
-        self.prefix = prefix
-
-        if expiration is None:
-            expiration = max(2 * update_period, MAX_DHT_TIME_DISCREPANCY_SECONDS)
-        self.expiration = expiration
-
-        self.request_timeout = request_timeout
-        self.session_timeout, self.step_timeout = session_timeout, step_timeout
-
-        self.dht = DHT(initial_peers=initial_peers, start=True, **kwargs)
-        visible_maddrs_str = [str(a) for a in self.dht.get_visible_maddrs()]
-        if initial_peers == PUBLIC_INITIAL_PEERS:
-            logger.info("Connecting to the public Petals swarm")
-        else:
-            logger.info(f"Running DHT node on {visible_maddrs_str}, initial peers = {initial_peers}")
-
-        device = device or ("cuda" if torch.cuda.is_available() else "cpu")
-        self.device = device
-
-        self.memory_cache = MemoryCache(device, attn_cache_size, alloc_timeout)
-
-        assert isinstance(throughput, float) or throughput in ["auto", "eval"]
-        if throughput in ["auto", "eval"]:
-            throughput = get_host_throughput(device, force_eval=(throughput == "eval"))
-        self.throughput = throughput
-
-        if isinstance(torch_dtype, str):
-            torch_dtype = DTYPE_MAP[torch_dtype]
-        assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
-        self.torch_dtype = torch_dtype
-
-        self.block_config = BloomConfig.from_pretrained(
-            converted_model_name_or_path,
-            use_auth_token=use_auth_token,
-            revision=revision,
-        )
-        self.module_uids = [f"{self.prefix}.{block_index}" for block_index in range(self.block_config.n_layer)]
-
-        assert (block_indices is None) != (num_blocks is None), "please specify num_blocks or block_indices, not both"
-        if block_indices is not None:
-            try:
-                first_block_index, last_block_index = block_indices.split(":")
-                first_block_index, last_block_index = map(int, map(str.strip, (first_block_index, last_block_index)))
-            except Exception as e:
-                logger.error(f"Failed to parse --block_indices ({e}), must be start:end (e.g. 0:18)")
-                raise
-            block_indices = range(first_block_index, last_block_index)
-        self.strict_block_indices, self.num_blocks = block_indices, num_blocks
-        self.balance_quality = balance_quality
-        self.mean_balance_check_period = mean_balance_check_period
-        self.mean_block_selection_delay = mean_block_selection_delay
-
-        self.stop = threading.Event()
-
-    def run(self):
-        while True:
-            block_indices = self._choose_blocks()
-            self.module_container = ModuleContainer.create(
-                dht=self.dht,
-                prefix=self.prefix,
-                converted_model_name_or_path=self.converted_model_name_or_path,
-                block_config=self.block_config,
-                memory_cache=self.memory_cache,
-                throughput=self.throughput,
-                block_indices=block_indices,
-                num_handlers=self.num_handlers,
-                min_batch_size=self.min_batch_size,
-                max_batch_size=self.max_batch_size,
-                inference_max_length=self.inference_max_length,
-                torch_dtype=self.torch_dtype,
-                cache_dir=self.cache_dir,
-                device=self.device,
-                compression=self.compression,
-                stats_report_interval=self.stats_report_interval,
-                update_period=self.update_period,
-                expiration=self.expiration,
-                request_timeout=self.request_timeout,
-                session_timeout=self.session_timeout,
-                step_timeout=self.step_timeout,
-                prefetch_batches=self.prefetch_batches,
-                sender_threads=self.sender_threads,
-                use_auth_token=self.use_auth_token,
-                load_in_8bit=self.load_in_8bit,
-                start=True,
-            )
-            try:
-                self.module_container.ready.wait()
-
-                while True:
-                    timeout = random.random() * 2 * self.mean_balance_check_period
-                    # TODO: Follow ModuleContainer status (to restart/stop if it crashes)
-                    if self.stop.wait(timeout):
-                        return
-
-                    if self._should_choose_other_blocks():
-                        logger.info("Swarm is imbalanced, server will load other blocks")
-                        break  # Stop serving this set of modules
-            finally:
-                self.module_container.shutdown()
-
-            self._clean_memory_and_fds()
-
-    def _clean_memory_and_fds(self):
-        del self.module_container
-        gc.collect()  # In particular, this closes unused file descriptors
-
-        cur_proc = psutil.Process()
-        num_fds = [proc.num_fds() for proc in [cur_proc] + psutil.Process().children(recursive=True)]
-        logger.info(f"Cleanup complete, {sum(num_fds)} open file descriptors left")
-
-    def _choose_blocks(self) -> List[int]:
-        if self.strict_block_indices is not None:
-            return self.strict_block_indices
-        assert self.num_blocks is not None
-
-        # If multiple servers (e.g., launched on the same machine by a script) get to this line at the same time,
-        # this delay decreases the probability of a race condition while choosing the best blocks to serve.
-        time.sleep(random.random() * 2 * self.mean_block_selection_delay)
-        module_infos = get_remote_module_infos(self.dht, self.module_uids, expiration_time=np.inf)
-        return block_selection.choose_best_blocks(self.num_blocks, module_infos)
-
-    def _should_choose_other_blocks(self) -> bool:
-        if self.strict_block_indices is not None:
-            return False
-
-        module_infos = get_remote_module_infos(self.dht, self.module_uids, expiration_time=np.inf)
-        return block_selection.should_choose_other_blocks(self.dht.peer_id, module_infos, self.balance_quality)
-
-    def shutdown(self):
-        self.stop.set()
-
-        self.dht.shutdown()
-        self.dht.join()
-
-
-class ModuleContainer(threading.Thread):
-    """Serves a set of specific Bloom layers for inference, forward, and backward. Announces itself over the DHT."""
-
-    # noinspection PyMethodOverriding
-    @classmethod
-    def create(
-        cls,
-        *,
-        dht: DHT,
-        prefix: str,
-        converted_model_name_or_path: str,
-        block_config: BloomConfig,
-        memory_cache: MemoryCache,
-        throughput: float,
-        block_indices: List[int],
-        min_batch_size: int,
-        max_batch_size: int,
-        torch_dtype: torch.dtype,
-        cache_dir: Optional[str],
-        device: Union[str, torch.device],
-        compression: CompressionType,
-        update_period: float,
-        expiration: Optional[float],
-        use_auth_token: Optional[str],
-        load_in_8bit: bool,
-        **kwargs,
-    ) -> ModuleContainer:
-        module_uids = [f"{prefix}.{block_index}" for block_index in block_indices]
-        joining_announcer = ModuleAnnouncerThread(
-            module_uids,
-            dht,
-            ServerState.JOINING,
-            throughput=throughput,
-            update_period=update_period,
-            expiration=expiration,
-            daemon=True,
-        )
-        joining_announcer.start()
-        logger.info(f"Announced that blocks {block_indices} are joining")
-
-        try:
-            blocks = {}
-            for module_uid, block_index in zip(module_uids, block_indices):
-                block = load_pretrained_block(
-                    converted_model_name_or_path,
-                    block_index,
-                    block_config,
-                    torch_dtype=torch_dtype,
-                    use_auth_token=use_auth_token,
-                    cache_dir=cache_dir,
-                )
-
-                if load_in_8bit:
-                    dtype = block.input_layernorm.weight.dtype
-                    block = replace_8bit_linear(block)
-
-                block = block.to(device)
-                for param in block.parameters():
-                    param.requires_grad = False
-
-                blocks[module_uid] = TransformerBackend(
-                    module_uid,
-                    block,
-                    memory_cache=memory_cache,
-                    backend_dtype=None if torch_dtype == "auto" else torch_dtype,
-                    args_schema=(
-                        BatchTensorDescriptor(
-                            1, 2048, block_config.hidden_size, dtype=torch.float32, compression=compression
-                        ),
-                    ),
-                    kwargs_schema={},
-                    outputs_schema=(
-                        BatchTensorDescriptor(
-                            1, 2048, block_config.hidden_size, dtype=torch.float32, compression=compression
-                        ),
-                    ),
-                    min_batch_size=min_batch_size,
-                    max_batch_size=max_batch_size,
-                )
-        except:
-            joining_announcer.stop.set()
-            joining_announcer.join()
-            declare_active_modules(
-                dht,
-                module_uids,
-                expiration_time=get_dht_time() + expiration,
-                state=ServerState.OFFLINE,
-                throughput=throughput,
-            )
-            logger.info(f"Announced that blocks {module_uids} are offline")
-            raise
-        else:
-            joining_announcer.stop.set()
-            joining_announcer.join()
-
-        return cls(
-            dht,
-            blocks,
-            throughput=throughput,
-            device=device,
-            update_period=update_period,
-            expiration=expiration,
-            **kwargs,
-        )
-
-    def __init__(
-        self,
-        dht: DHT,
-        module_backends: Dict[str, TransformerBackend],
-        *,
-        inference_max_length: int,
-        num_handlers: int,
-        throughput: float,
-        update_period: float,
-        expiration: Optional[float] = None,
-        request_timeout: float,
-        session_timeout: float,
-        step_timeout: float,
-        start: bool,
-        **kwargs,
-    ):
-        super().__init__()
-
-        self.dht, self.module_backends = dht, module_backends
-        self.throughput, self.update_period, self.expiration = throughput, update_period, expiration
-        self.conn_handlers = [
-            TransformerConnectionHandler(
-                dht,
-                self.module_backends,
-                inference_max_length=inference_max_length,
-                request_timeout=request_timeout,
-                session_timeout=session_timeout,
-                step_timeout=step_timeout,
-            )
-            for _ in range(num_handlers)
-        ]
-        self.runtime = Runtime(self.module_backends, **kwargs)
-        self.online_announcer = ModuleAnnouncerThread(
-            list(self.module_backends.keys()),
-            dht,
-            ServerState.ONLINE,
-            throughput=throughput,
-            update_period=update_period,
-            expiration=expiration,
-            daemon=True,
-        )
-        self.checkpoint_saver = None  # no need to save checkpoints since we do not change model state
-
-        if start:
-            self.run_in_background(await_ready=True)
-
-    def run(self):
-        """
-        Runs ModuleContainer in the current thread. Initializes dht if necessary, starts connection handlers,
-        runs Runtime (self.runtime) to process incoming requests.
-        """
-        if not self.dht.is_alive():
-            self.dht.run_in_background(await_ready=True)
-
-        self.online_announcer.start()
-
-        if self.checkpoint_saver is not None:
-            self.checkpoint_saver.start()
-
-        for handler in self.conn_handlers:
-            handler.run_in_background()
-
-        self.runtime.run()
-
-    def run_in_background(self, await_ready=True, timeout=None):
-        """
-        Starts ModuleContainer in a background thread. if await_ready, this method will wait until the container
-        is ready to process incoming requests or for :timeout: seconds max.
-        """
-        self.start()
-        if await_ready and not self.ready.wait(timeout=timeout):
-            raise TimeoutError("ModuleContainer didn't notify .ready in {timeout} seconds")
-
-    @property
-    def ready(self) -> mp.synchronize.Event:
-        """
-        An event (multiprocessing.Event) that is set when the container is ready to process requests.
-
-        Example
-        =======
-        >>> container.start()
-        >>> container.ready.wait(timeout=10)
-        >>> print("Container ready" if container.ready.is_set() else "Container didn't start in 10 seconds")
-        """
-        return self.runtime.ready  # mp.Event that is true if self is ready to process batches
-
-    def shutdown(self):
-        """
-        Gracefully terminate the container, process-safe.
-        Please note that terminating container otherwise (e.g. by killing processes) may result in zombie processes.
-        If you did already cause a zombie outbreak, your only option is to kill them with -9 (SIGKILL).
-        """
-        self.online_announcer.stop.set()
-        self.online_announcer.join()
-
-        declare_active_modules(
-            self.dht,
-            self.module_backends.keys(),
-            expiration_time=get_dht_time() + self.expiration,
-            state=ServerState.OFFLINE,
-            throughput=self.throughput,
-        )
-        logger.info(f"Announced that blocks {list(self.module_backends.keys())} are offline")
-
-        self.ready.clear()
-
-        for handler in self.conn_handlers:
-            handler.shutdown()
-        logger.debug("Connection handlers terminated")
-
-        if self.checkpoint_saver is not None:
-            self.checkpoint_saver.stop.set()
-            self.checkpoint_saver.join()
-
-        logger.debug(f"Shutting down pools")
-        for pool in self.runtime.pools:
-            if pool.is_alive():
-                pool.shutdown()
-
-        logger.debug(f"Shutting down runtime")
-        self.runtime.shutdown()
-
-        logger.info("Module container shut down succesfully")
-
-
-class ModuleAnnouncerThread(threading.Thread):
-    """Periodically announces that this container hosts the specified modules, visible to all DHT peers"""
-
-    def __init__(
-        self,
-        module_uids: List[str],
-        dht: DHT,
-        state: ServerState,
-        *,
-        throughput: float,
-        update_period: float = 30,
-        expiration: float,
-        **kwargs,
-    ):
-        super().__init__(**kwargs)
-        self.module_uids = module_uids
-        self.dht = dht
-        self.state = state
-        self.throughput = throughput
-        self.update_period = update_period
-        self.expiration = expiration
-        self.stop = threading.Event()
-
-    def run(self) -> None:
-        while True:
-            declare_active_modules(
-                self.dht,
-                self.module_uids,
-                expiration_time=get_dht_time() + self.expiration,
-                state=self.state,
-                throughput=self.throughput,
-            )
-            if self.stop.wait(self.update_period):
-                break

+ 0 - 178
src/petals/src/server/task_pool.py

@@ -1,178 +0,0 @@
-import ctypes
-import multiprocessing as mp
-import threading
-import time
-from dataclasses import dataclass, field
-from queue import PriorityQueue
-from typing import Any, Generator, List, Optional, Sequence, Tuple
-
-import torch
-from hivemind import MPFuture, get_logger, use_hivemind_log_handler
-from hivemind.moe.server.task_pool import TaskPoolBase
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-@dataclass(order=True, frozen=True)
-class Task:
-    priority: float
-    time_submitted: float
-    future: MPFuture = field(compare=False)
-    args: Sequence[torch.Tensor] = field(compare=False)
-
-    @property
-    def uid(self) -> int:
-        return self.future._uid
-
-
-class PrioritizedTaskPool(TaskPoolBase):
-    """
-    Aggregates requests from multiple ConnectionHandler instances, orders them for processing in Runtime, then
-    returns results (or exception) to the corresponding ConnectionHandler. Runs a background process.
-    A single PrioritizedTaskPool services a specific function (e.g. layer1.forward, layer2.forward or layer1.backward)
-
-    :note: unlike hivemind.moe TaskPool, this pool does *not* combine incoming requests into batches.
-      This would require grouping requests of different length.
-
-    :param process_func: function to be applied to every formed batch; called by Runtime
-        Note that process_func should accept only positional args (Tensors) and return a flat tuple of Tensors
-    :param max_batch_size: process at most this many inputs in a batch (task contains have one or several inputs)
-         Measured in the total number of tokens (i.e. batch size * sequence length)
-
-    :param name: pool name, used for logging
-    :param min_batch_size: process at least this many inputs in a batch, otherwise wait for more
-    :param start: if True, start automatically at the end of __init__
-    """
-
-    def __init__(
-        self,
-        process_func: callable,
-        max_batch_size: int,
-        name: str,
-        min_batch_size=1,
-        daemon=True,
-        start=False,
-    ):
-        super().__init__(process_func, daemon=daemon, name=name)
-        self.min_batch_size, self.max_batch_size = min_batch_size, max_batch_size
-
-        self.submitted_tasks = mp.SimpleQueue()  # interaction with ConnectionHandlers
-        self._ordered_tasks = PriorityQueue()  # interaction with Runtime - only valid inside Runtime
-
-        self._prioritizer_thread = threading.Thread(
-            name=self.name + "_prioritizer",
-            target=self._prioritize_tasks,
-            args=[self.submitted_tasks, self._ordered_tasks],
-            daemon=True,
-        )
-        self._dispatched_tasks = {}
-        self.batch_receiver, self.batch_sender = mp.Pipe(duplex=False)
-        self._oldest_undispatched_timestamp = mp.Value(ctypes.c_double, 1.0)
-        self.priority = float("inf"), float("inf")  # (first task priority, first task timestamp)
-
-        self._stop = mp.Event()
-        if start:
-            self.start()
-
-    @staticmethod
-    def _prioritize_tasks(submitted_tasks: mp.SimpleQueue, ordered_tasks: PriorityQueue):
-        """Read tasks from incoming queue and put them into a local priority queue"""
-        while True:
-            task = submitted_tasks.get()
-            if task is None:
-                logger.debug("Shutting down prioritizer thread")
-                break
-
-            ordered_tasks.put(task, block=True)
-
-    def start(self):
-        assert not self.is_alive() and not self._prioritizer_thread.is_alive()
-        self._prioritizer_thread.start()
-        super().start()
-
-    def shutdown(self, timeout: float = 3):
-        self.submitted_tasks.put(None)  # Shuts down self._prioritizer_thread
-        self._stop.set()
-
-        self.join(timeout)
-        if self.is_alive():
-            logger.warning(f"{self.__class__.__name__} failed to shut down gracefully, sending SIGTERM")
-            self.terminate()
-
-    def submit_task(self, *args: torch.Tensor, priority: float = 0.0) -> MPFuture:
-        """Add task to this pool's queue, return Future for its output"""
-        task = Task(priority, time.monotonic(), MPFuture(), args)
-        if self.get_task_size(task) > self.max_batch_size:
-            exc = ValueError(f"Task size greater than max_batch_size ({self.max_batch_size}), it can't be processed")
-            task.future.set_exception(exc)
-        else:
-            self.submitted_tasks.put(task)
-            self.batch_sender.send(None)  # use this pipe to count the number of unfinished batches
-            if (task.priority, task.time_submitted) < self.priority:
-                self.priority = (task.priority, task.time_submitted)
-        return task.future
-
-    def get_task_size(self, task: Task) -> int:
-        """compute task processing complexity; defaults to the total number of tokens"""
-        if task.args and task.args[0].ndim >= 2:
-            return task.args[0].shape[0] * task.args[0].shape[1]
-        return 1
-
-    def load_batch_to_runtime(
-        self, timeout: Optional[float] = None, device: Optional[torch.device] = None
-    ) -> Tuple[Any, List[torch.Tensor]]:
-        """receive next batch of arrays"""
-        task = self._ordered_tasks.get(block=True, timeout=timeout)
-        batch_inputs = [
-            tensor.detach().to(device, non_blocking=True).requires_grad_(tensor.requires_grad) for tensor in task.args
-        ]
-        self._dispatched_tasks[task.uid] = task
-        self.batch_receiver.recv()  # reduce the number of active batches
-        if not self._ordered_tasks.empty():
-            first_remaining_task: Task = self._ordered_tasks.queue[0]
-            self.priority = (first_remaining_task.priority, first_remaining_task.time_submitted)
-        return task.uid, batch_inputs
-
-    def send_outputs_from_runtime(self, uid: int, batch_outputs: List[torch.Tensor]):
-        """send results for a processed batch, previously loaded through load_batch_to_runtime"""
-        batch_outputs = [
-            tensor.to(device="cpu").share_memory_().detach().requires_grad_(tensor.requires_grad)
-            for tensor in batch_outputs
-        ]
-
-        task = self._dispatched_tasks.pop(uid, None)
-        if task is None:
-            logger.error(
-                f"Internal error: task task with index {uid} is missing from the dictionary; " f"Could not set result"
-            )
-        else:
-            task.future.set_result(batch_outputs)
-
-    def send_exception_from_runtime(self, uid: int, exception: BaseException):
-        task = self._dispatched_tasks.pop(uid, None)
-        if task is None:
-            logger.error(
-                f"Internal error: task task with index {uid} is missing from the dictionary; "
-                f"Could not set exception {exception}"
-            )
-        else:
-            task.future.set_exception(exception)
-
-    def run(self, *args, **kwargs):
-        self._stop.wait()
-
-    @property
-    def empty(self):
-        return not self.batch_receiver.poll()
-
-    @property
-    def priority(self) -> Tuple[float, float]:
-        """The priority of this pool equals the (priority, timestamp) of the most important task in it."""
-        return float(self._priority.value), float(self._oldest_undispatched_timestamp.value)
-
-    @priority.setter
-    def priority(self, item: Tuple[float, float]):
-        assert len(item) == 2
-        self._priority.value = float(item[0])
-        self._oldest_undispatched_timestamp.value = float(item[1])

+ 0 - 20
src/petals/src/server/task_prioritizer.py

@@ -1,20 +0,0 @@
-from abc import ABC, abstractmethod
-
-import torch
-from hivemind.moe.server.task_pool import Task
-
-
-class TaskPrioritizerBase(ABC):
-    """Abstract class for TaskPrioritizer whose reponsibility is to evaluate task priority"""
-
-    @abstractmethod
-    def prioritize(self, *input: torch.Tensor, points: float = 0.0, **kwargs) -> float:
-        """Evaluates task value by the amout of points given, task input and additional kwargs. Lower priority is better"""
-        pass
-
-
-class DummyTaskPrioritizer(TaskPrioritizerBase):
-    """Simple implementation of TaskPrioritizer which gives constant zero priority for every task"""
-
-    def prioritize(self, *input: torch.Tensor, points: float = 0.0, **kwargs) -> float:
-        return 0.0

+ 0 - 127
src/petals/src/server/throughput.py

@@ -1,127 +0,0 @@
-import fcntl
-import json
-import os
-import subprocess
-import tempfile
-import time
-from dataclasses import asdict, dataclass
-from pathlib import Path
-from typing import Dict, Union
-
-import torch
-from hivemind.utils.logging import get_logger, use_hivemind_log_handler
-
-from petals import project_name
-from petals.bloom.block import BloomBlock
-from petals.bloom.model import BloomConfig
-from petals.bloom.ops import build_alibi_tensor
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-DEFAULT_CACHE_PATH = Path(Path.home(), ".cache", project_name, "throughput.json")
-DEFAULT_LOCK_PATH = Path(tempfile.gettempdir(), project_name, "throughput.lock")
-
-SPEED_TEST_PATH = Path(Path(__file__).absolute().parents[2], "cli", "speed_test.py")
-
-
-@dataclass
-class ThroughputInfo:
-    network_rps: float
-    device_rps: Dict[str, float]
-
-
-def get_host_throughput(
-    device: Union[str, torch.device],
-    force_eval: bool = False,
-    cache_path: str = DEFAULT_CACHE_PATH,
-    lock_path: str = DEFAULT_LOCK_PATH,
-) -> float:
-    # We only keep the device type, assuming that the throughput is similar among all host's GPUs
-    device = torch.device(device).type
-
-    # We use the system-wide lock since only one process at a time can measure the host throughput
-    os.makedirs(lock_path.parent, exist_ok=True)
-    with open(lock_path, "wb") as lock_fd:
-        logger.info("Loading throughput info")
-        fcntl.flock(lock_fd.fileno(), fcntl.LOCK_EX)
-        # The OS will release the lock when lock_fd is closed or the process is killed
-
-        info = None
-        try:
-            if not force_eval and os.path.exists(cache_path):
-                with open(cache_path) as cache_fd:
-                    info = ThroughputInfo(**json.load(cache_fd))
-                if device not in info.device_rps:
-                    force_eval = True
-        except Exception:
-            logger.exception(f"Failed to read throughput info from {cache_path}")
-            force_eval = True
-
-        if force_eval or info is None:
-            info = measure_throughput_info()
-            try:
-                os.makedirs(cache_path.parent, exist_ok=True)
-                with open(cache_path, "w") as cache_fd:
-                    json.dump(asdict(info), cache_fd)
-            except Exception:
-                logger.exception(f"Failed to save throughput info in {cache_path}")
-
-    throughput = min(info.network_rps, info.device_rps[device])
-    return throughput
-
-
-def measure_throughput_info() -> ThroughputInfo:
-    logger.info(
-        "Measuring network, CPU, and GPU throughput. " "This takes about a minute and will be cached for future runs"
-    )
-
-    # We measure throughput in "(inference) requests per second" (RPS) using a fixed model
-    config = BloomConfig.from_pretrained("bigscience/test-bloomd-6b3")
-
-    network_rps = measure_network_rps(config)
-
-    device_rps = {"cpu": measure_device_rps("cpu", config)}
-    if torch.cuda.is_available():
-        device_rps["cuda"] = measure_device_rps("cuda", config)
-
-    return ThroughputInfo(network_rps=network_rps, device_rps=device_rps)
-
-
-def measure_network_rps(config: BloomConfig) -> float:
-    proc = subprocess.run([SPEED_TEST_PATH, "--json"], capture_output=True)
-    if proc.returncode != 0:
-        raise RuntimeError(f"Failed to measure network throughput (stdout: {proc.stdout}, stderr: {proc.stderr})")
-    network_info = json.loads(proc.stdout)
-
-    bits_per_request = config.hidden_size * 32
-    network_rps = min(network_info["download"], network_info["upload"]) / bits_per_request
-
-    logger.info(
-        f"Network throughput: "
-        f"{network_info['download'] / 1e6:.2f} Mbit/s on download, "
-        f"{network_info['upload'] / 1e6:.2f} Mbit/s on upload, "
-        f"{network_rps:.2f} RPS"
-    )
-    return network_rps
-
-
-def measure_device_rps(device: str, config: BloomConfig, layer_index: int = 0, n_steps: int = 500) -> float:
-    with torch.inference_mode():
-        block = BloomBlock(config, layer_index).to(device)
-        cache = None
-        elapsed = 0
-        for i in range(n_steps):
-            dummy_input = torch.randn(1, 1, config.hidden_size, device=device)
-            alibi = build_alibi_tensor(i + 1, config.num_attention_heads, dtype=torch.float32, device=device)
-
-            start_time = time.perf_counter()
-            _, cache = block.forward(dummy_input, alibi=alibi, use_cache=True, layer_past=cache)
-            elapsed += time.perf_counter() - start_time
-        device_rps = n_steps / elapsed
-
-    device_name = f"{torch.cuda.get_device_name(0)} GPU" if device == "cuda" else "CPU"
-    logger.info(f"Compute throughput ({device_name}): {device_rps:.2f} RPS")
-
-    return device_rps

+ 0 - 0
src/petals/src/utils/__init__.py


+ 0 - 41
src/petals/src/utils/convert_8bit.py

@@ -1,41 +0,0 @@
-import os
-
-import bitsandbytes as bnb
-import torch
-
-PETALS_8BIT_BACKWARD = bool(int(os.environ.get("PETALS_8BIT_BACKWARD", 1)))
-
-
-def replace_8bit_linear(model, threshold=6.0):
-    """
-    A helper function to convert all `torch.nn.Linear` modules to `bnb.nn.Linear8bit` modules from the `bitsandbytes`
-    library. This will enable running your models using mixed int8 precision as described by the paper `GPT3.int8():
-    8-bit Matrix Multiplication for Transformers at Scale`. Make sure `bitsandbytes` compiled with the correct CUDA
-    version of your hardware is installed before running this function. `pip install -i https://test.pypi.org/simple/
-    bitsandbytes-cudaXXX` with `XXX` is your CUDA version (e.g., 11.6 = 116)
-    The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` and 'score' that should
-    be kept as a `torch.nn.Linear` module.
-    Parameters:
-        model (`torch.nn.Module`):
-            Input model or `torch.nn.Module` as the function is run recursively.
-        threshold (`float`, *optional*):
-            `int8_threshold` for outlier detection as described in the formentioned paper. This parameters is set to
-            `6.0` as described by the paper.
-    """
-    for n, module in model.named_children():
-        if len(list(module.children())) > 0:
-            replace_8bit_linear(module, threshold)
-
-        if isinstance(module, torch.nn.Linear) and n not in ["lm_head", "score"]:
-            model._modules[n] = bnb.nn.Linear8bitLt(
-                module.in_features,
-                module.out_features,
-                module.bias is not None,
-                has_fp16_weights=False,
-                threshold=threshold,
-                memory_efficient_backward=PETALS_8BIT_BACKWARD,
-            )
-            model._modules[n].weight = bnb.nn.Int8Params(
-                module.weight.data, requires_grad=False, has_fp16_weights=False
-            ).to(module.weight.dtype)
-    return model

+ 0 - 121
src/petals/src/utils/generation_algorithms.py

@@ -1,121 +0,0 @@
-from abc import ABC
-from typing import Tuple
-
-import torch
-
-TokenIds = torch.Tensor
-HypoIds = torch.Tensor
-
-
-class DecodingAlgorithm(ABC):
-    """
-    An abstract class for decoding algorithms. Describe base function of those algorithms: they have to select new tokens and provide the corresponding hypothesis.
-    """
-
-    def __init__(self) -> None:
-        pass
-
-    def __call__(self, logits: torch.Tensor) -> Tuple[TokenIds, HypoIds]:
-        """
-        :param logits: A tensor of shape (batch_size, seq_lenth, vocab_size)
-        :return: A tuple of selected token ids and corresponding hypothesis. The shape of the token ids is (batch_size, seq_length) and the shape of the hypothesis is (batch_size)
-        """
-        pass
-
-
-class GreedyAlgorithm(DecodingAlgorithm):
-    """
-    The simpliest algorithm for decoding. It selects the most probable token.
-    """
-
-    def __call__(self, logits: torch.Tensor) -> Tuple[TokenIds, HypoIds]:
-        """
-        Returns the most propable token. The second return object always are range of integers from 0 to batch_size - 1.
-        """
-        return logits.max(-1)[1].unsqueeze(1), torch.arange(logits.size(0))
-
-
-class SamplingAlgorithm(DecodingAlgorithm):
-    def sample(self, logits: torch.Tensor, indices_to_remove: torch.Tensor) -> Tuple[TokenIds, HypoIds]:
-        """
-        :param logits: A tensor of shape (batch_size * num_hypos, vocab_size)
-        :param indices_to_remove: A bool tensor of shape (batch_size * num_hypos, vocab_size)
-        :return: A tuple of selected token ids and corresponding hypothesis. The shape of the token ids is (batch_size, seq_length) and the shape of the hypothesis is (batch_size).
-        """
-        logits[indices_to_remove] = -float("Inf")
-        probs = torch.softmax(logits / self.temperature, -1)
-        return torch.multinomial(probs, num_samples=1), torch.arange(logits.size(0))
-
-
-class TopKAlgorithm(SamplingAlgorithm):
-    def __init__(self, top_k: int, temperature: float = 1.0) -> None:
-        self.top_k = top_k
-        self.temperature = temperature
-
-    def __call__(self, logits: torch.Tensor) -> Tuple[TokenIds, HypoIds]:
-        indices_to_remove = logits < torch.topk(logits, self.top_k, dim=-1)[0][..., -1, None]
-        return self.sample(logits, indices_to_remove)
-
-
-class NucleusAlgorithm(SamplingAlgorithm):
-    def __init__(self, top_p: float, temperature: float = 1.0) -> None:
-        self.top_p = top_p
-        self.temperature = temperature
-
-    def __call__(self, logits: torch.Tensor) -> Tuple[TokenIds, HypoIds]:
-        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
-        probs = torch.softmax(sorted_logits / self.temperature, -1)
-        cumulative_probs = torch.cumsum(probs, dim=-1)
-        sorted_indices_to_remove = cumulative_probs > self.top_p
-        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
-        sorted_indices_to_remove[..., 0] = False
-        indices_to_remove = torch.zeros_like(sorted_indices_to_remove)
-        indices_to_remove.scatter_(-1, sorted_indices, sorted_indices_to_remove)
-        return self.sample(logits, indices_to_remove)
-
-
-class BeamSearchAlgorithm(DecodingAlgorithm):
-    def __init__(self, num_beams: int, batch_size: int) -> None:
-        self.num_beams = num_beams
-        self._cur_num_beams = 1
-        self.batch_size = batch_size
-
-        self._batch_beams = [list() for _ in range(batch_size)]
-
-    def __call__(self, logits: torch.Tensor):
-        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
-        probs = torch.log_softmax(sorted_logits, -1)
-
-        if len(self._batch_beams[0]) > 0:
-            for batch_idx in range(self.batch_size):
-                new_beams = []
-                cur_beams = self._batch_beams[batch_idx]
-                for beam_idx in range(len(cur_beams)):
-                    probs_idx = batch_idx + beam_idx * self.batch_size
-                    new_beam = cur_beams[beam_idx]
-                    for hypo_idx in range(self.num_beams):
-                        new_beams.append(
-                            (new_beam[0] + probs[probs_idx, hypo_idx].item(), beam_idx * self.num_beams + hypo_idx)
-                        )
-                self._batch_beams[batch_idx] = sorted(new_beams, reverse=True)[: self.num_beams]
-        else:
-            for batch_idx in range(self.batch_size):
-                for beam_idx in range(self.num_beams):
-                    self._batch_beams[batch_idx].append((probs[batch_idx, beam_idx].item(), beam_idx))
-
-        return_hypos = []
-        return_tokens = []
-        for batch_idx in range(self.batch_size):
-            cur_beam = self._batch_beams[batch_idx]
-            return_hypos.append(list())
-            return_tokens.append(list())
-            for beam in cur_beam:
-                beam_idx = beam[1] // self.num_beams
-                hypo_idx = batch_idx + beam_idx * self.batch_size
-                token_idx = beam[1] % self.num_beams
-                return_hypos[-1].append(hypo_idx)
-                return_tokens[-1].append([sorted_indices[hypo_idx, token_idx].item()])
-        return_hypos = [hypo_idx for hypo_indexes in zip(*return_hypos) for hypo_idx in hypo_indexes]
-        return_tokens = [token_idx for token_indexes in zip(*return_tokens) for token_idx in token_indexes]
-
-        return torch.tensor(return_tokens), torch.tensor(return_hypos)

+ 0 - 51
src/petals/src/utils/generation_constraints.py

@@ -1,51 +0,0 @@
-from abc import ABC
-
-import torch
-
-
-class ABCBloomConstraint(ABC):
-    """
-    Base class of all kind of decoding constraints. It can be used to implement a new constraint.
-    """
-
-    def __init__(self) -> None:
-        pass
-
-    def __call__(self, tokens_id: torch.Tensor, logits: torch.Tensor, hypo_ids: torch.Tensor) -> torch.Tensor:
-        """
-        This method is called by the decoding algorithm to apply the constraint. It changes and returns new logits.
-        :param tokens_id: The token id of the last choosen token.
-        :param logits: The logits from the Bloom model.
-        :param hypo_ids: The hypothesis ids of the last tokens.
-        """
-        pass
-
-
-class EosConstraint(ABCBloomConstraint):
-    """
-    This constrained repeats EOS token if it was generated on the previous step.
-    Args:
-        prefix: The prefix of the sequence.
-        eos_token_id: The id of the end of sentence token.
-        pad_token_id: The id of the padding token.
-        min_logits: The minimum logits that can be generated. Default: -1e6.
-    """
-
-    def __init__(self, prefix: torch.Tensor, eos_token_id: int, pad_token_id: int, min_logits: float = -1e8) -> None:
-        self.eos_token_id = eos_token_id
-        self.min_logits = min_logits
-        self.past_tokens = None
-
-        self.wait_until_starting = (prefix == pad_token_id).sum(1).unsqueeze(1)
-
-    def __call__(self, tokens_id: torch.Tensor, logits: torch.Tensor, hypo_ids: torch.Tensor) -> torch.Tensor:
-        if self.past_tokens is not None:
-            mask = (self.wait_until_starting < 0) & (self.past_tokens == self.eos_token_id)
-            logits += self.min_logits * mask
-            logits[mask[:, 0], self.eos_token_id] = 0
-
-        if tokens_id is not None:
-            self.past_tokens = tokens_id
-            self.wait_until_starting -= 1
-
-        return logits

+ 0 - 7
src/petals/src/utils/misc.py

@@ -1,7 +0,0 @@
-import torch
-
-DUMMY = torch.empty(0)  # dummy tensor that replaces empty prompt or adapter parameters
-
-
-def is_dummy(tensor: torch.Tensor):
-    return tensor.numel() == 0