|
@@ -4,15 +4,116 @@ Generalized parameter-efficient finetuning modules that support deep prompts and
|
|
|
Designed to be used on both client and server side.
|
|
|
|
|
|
"""
|
|
|
+from enum import Enum
|
|
|
+from typing import Optional
|
|
|
+
|
|
|
+import torch
|
|
|
import torch.nn as nn
|
|
|
+import torch.nn.functional as F
|
|
|
+
|
|
|
+from src.utils.misc import DUMMY, is_dummy
|
|
|
|
|
|
-from src.utils.misc import DUMMY
|
|
|
|
|
|
+class TransformerBlockPEFT(nn.Module):
|
|
|
+ """
|
|
|
+ Modular parameter-efficient finetuning adapters for a single transformer block.
|
|
|
+ Contains a variable number of parameters that can provide soft prompts, adapters, IA3, or a combination thereof.
|
|
|
|
|
|
-class GenericPEFTModule(nn.Module):
|
|
|
- """Container for PEFT parameters for a single transformer block, supports multiple modes"""
|
|
|
+ :note: all unused trainable parameters will be represented with a special DUMMY tensor
|
|
|
+ """
|
|
|
|
|
|
def __init__(self, hidden_size: int):
|
|
|
super().__init__()
|
|
|
self.hidden_size = hidden_size
|
|
|
- self.prompts = nn.Parameter(DUMMY)
|
|
|
+
|
|
|
+ # "deep" prompts, applied to the outputs of each layer (https://arxiv.org/abs/2110.07602)
|
|
|
+ self.prompts = nn.Parameter(DUMMY) # dummy or [batch_size or 1, seq_length_prefix, hid_size]
|
|
|
+
|
|
|
+ # adapter input projection; used for output adapters, can be reused for other adapters
|
|
|
+ self.key_adapter = LowRankAdapter
|
|
|
+ self.adapter_in_bias = nn.Parameter(DUMMY) # [hid_size]
|
|
|
+
|
|
|
+ # output projection, applied to the residual layer after MLP
|
|
|
+ self.adapter_out_weight = nn.Parameter(DUMMY) # [adapter_dim, hid_size or hid_size * 2]
|
|
|
+ self.adapter_out_bias = nn.Parameter(DUMMY) # [hid_size]
|
|
|
+ self.adapter_out_scale = nn.Parameter(DUMMY) # [hid_size]
|
|
|
+
|
|
|
+# planned:
|
|
|
+# strategy: define
|
|
|
+# - check that LowRankAdapter works :)
|
|
|
+# - implement a function that converts lowrank adapter to [list_of_tensors, metadata]
|
|
|
+# - pass list of tensors and metadata in chained requests
|
|
|
+# - figure out how to handle layernorm, e.g. option to normalize before adapter(default=True, no rescale)
|
|
|
+# - check exact match with local layer
|
|
|
+
|
|
|
+
|
|
|
+class LowRankAdapter(nn.Module):
|
|
|
+ def __init__(self, hidden_size: int):
|
|
|
+ super().__init__()
|
|
|
+ self.hidden_size = hidden_size
|
|
|
+ self.in_proj = nn.Parameter(DUMMY, requires_grad=False) # [rank, hid_size]
|
|
|
+ self.hid_bias = nn.Parameter(DUMMY, requires_grad=False) # [rank]
|
|
|
+ self.out_proj = nn.Parameter(DUMMY, requires_grad=False) # [hid_size or 2 * hid_size, rank]
|
|
|
+ self.out_scale = nn.Parameter(DUMMY, requires_grad=False) # [hid_size]
|
|
|
+ self.out_bias = nn.Parameter(DUMMY, requires_grad=False) # [hid_size]
|
|
|
+ self.register_buffer("activation", torch.tensor(0, torch.int64), persistent=True) # []
|
|
|
+
|
|
|
+ def forward(self, input: torch.Tensor, base_output: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
+ """
|
|
|
+ :param input: applies adapter to this tensor
|
|
|
+ :param base_output: outputs of a base model's linear layer; defaults to same as input
|
|
|
+ :return: adjusted output, after using the low-rank adapter
|
|
|
+ """
|
|
|
+ base_output = base_output if base_output is not None else input
|
|
|
+ has_scale, has_bias = not is_dummy(self.out_scale), not is_dummy(self.out_bias)
|
|
|
+ has_adapter = not is_dummy(self.in_proj)
|
|
|
+
|
|
|
+ # adapter components
|
|
|
+ additive = self.out_bias if has_bias else None
|
|
|
+ multiplicative = self.out_scale if has_scale else None
|
|
|
+
|
|
|
+ if has_adapter:
|
|
|
+ hid = F.linear(input, weight=self.in_proj, bias=None if is_dummy(self.in_bias) else self.in_bias)
|
|
|
+
|
|
|
+ if self.activation:
|
|
|
+ activation_fn = _ACTIVATIONS_BY_INDEX[int(self.activation.item())]
|
|
|
+ hid = activation_fn(hid)
|
|
|
+
|
|
|
+ if self.out_proj.shape[0] == self.hidden_size:
|
|
|
+ additive = F.linear(hid, self.out_proj, bias=additive)
|
|
|
+
|
|
|
+ elif self.out_proj.shape[0] == 2 * self.hidden_size:
|
|
|
+ bias_and_scale = None
|
|
|
+ if has_scale or has_bias:
|
|
|
+ scale_or_ones = self.out_scale if has_scale else torch.ones_like(self.out_bias)
|
|
|
+ bias_or_zeros = self.out_bias if has_bias else torch.zeros_like(self.out_scale)
|
|
|
+ bias_and_scale = torch.cat([bias_or_zeros, scale_or_ones], dim=0)
|
|
|
+ combined_out = F.linear(hid, self.out_proj, bias=bias_and_scale)
|
|
|
+ additive, multiplicative = combined_out.split(self.hidden_size, dim=-1)
|
|
|
+
|
|
|
+ if additive is not None and multiplicative is not None:
|
|
|
+ return torch.addcmul(additive, base_output, multiplicative)
|
|
|
+ elif additive is not None:
|
|
|
+ return additive.add_(base_output)
|
|
|
+ elif multiplicative is not None:
|
|
|
+ return base_output * multiplicative
|
|
|
+ else:
|
|
|
+ return base_output
|
|
|
+
|
|
|
+ @property
|
|
|
+ def rank(self) -> int:
|
|
|
+ return 0 if is_dummy(self.out_proj) else self.out_proj.shape[-1]
|
|
|
+
|
|
|
+
|
|
|
+class ACTIVATIONS(Enum):
|
|
|
+ # enum of allowed activations for server-side adapters; linear activation is represented with DUMMY tensor
|
|
|
+ # beware: these activations should be backwards compatible! new activations can only be added to the end of the list
|
|
|
+ relu, gelu, relu6, leaky_relu, sigmoid, tanh = range(1, 7)
|
|
|
+
|
|
|
+
|
|
|
+for act in list(ACTIVATIONS)[1:]:
|
|
|
+ assert hasattr(F, act.name), act.name
|
|
|
+
|
|
|
+_ACTIVATIONS_BY_INDEX = {act.value: getattr(F, act.name) for act in ACTIVATIONS}
|
|
|
+_ACTIVATIONS_BY_INDEX[0] = lambda x: x
|
|
|
+
|