|
@@ -0,0 +1,220 @@
|
|
|
+import asyncio
|
|
|
+import logging
|
|
|
+from typing import List, Optional, Sequence, Tuple
|
|
|
+
|
|
|
+import torch
|
|
|
+from hivemind import serialize_torch_tensor
|
|
|
+from hivemind.moe.client.expert import expert_backward, expert_forward
|
|
|
+from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
|
|
|
+from hivemind.p2p import StubBase
|
|
|
+from hivemind.utils.nested import nested_compare, nested_flatten, nested_pack
|
|
|
+
|
|
|
+from src.client.sequence_manager import RemoteSequenceManager
|
|
|
+from src.data_structures import CHAIN_DELIMITER, ModuleUID, RemoteSpanInfo, RPCInfo
|
|
|
+from src.server.handler import TransformerConnectionHandler
|
|
|
+
|
|
|
+MAX_TOKENS_IN_BATCH = 1024
|
|
|
+
|
|
|
+
|
|
|
+async def run_expert_forward(
|
|
|
+ uid: ModuleUID, stub: StubBase, rpc_info: RPCInfo, *inputs: torch.Tensor, **kwargs
|
|
|
+) -> Tuple[torch.Tensor, ...]:
|
|
|
+ """
|
|
|
+ Serializes input tensors and calls "expert_forward".
|
|
|
+ Mostly adapted from https://github.com/learning-at-home/hivemind/blob/7a7c93aefffc9494c39e7b170c07cb06d8c09c4c/hivemind/moe/client/expert.py#L198
|
|
|
+ but without RemoteExpertWorker.run_coroutine() call that leads to deadlock here.
|
|
|
+ """
|
|
|
+
|
|
|
+ # Note: *inputs are flattened input tensors that follow the expert's info['input_schema']
|
|
|
+ # detach to avoid pickling the computation graph
|
|
|
+ assert len(kwargs) == len(rpc_info["keyword_names"]), f"Keyword args should be {rpc_info['keyword_names']}"
|
|
|
+ kwargs = {key: kwargs[key] for key in rpc_info["keyword_names"]}
|
|
|
+
|
|
|
+ # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
|
|
|
+ forward_inputs = (inputs, kwargs)
|
|
|
+
|
|
|
+ if not nested_compare(forward_inputs, rpc_info["forward_schema"]):
|
|
|
+ raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
|
|
|
+
|
|
|
+ forward_inputs = nested_flatten(forward_inputs)
|
|
|
+ inputs = tuple(tensor.cpu().detach() for tensor in forward_inputs)
|
|
|
+
|
|
|
+ # TODO: figure out whether we should use run_in_executor here
|
|
|
+ serialized_tensors = (
|
|
|
+ serialize_torch_tensor(tensor, proto.compression)
|
|
|
+ for tensor, proto in zip(inputs, nested_flatten(rpc_info["forward_schema"]))
|
|
|
+ )
|
|
|
+ deserialized_outputs = await expert_forward(uid, inputs, serialized_tensors, stub)
|
|
|
+ flat_outputs = tuple(deserialized_outputs)
|
|
|
+
|
|
|
+ return nested_pack(flat_outputs, structure=rpc_info["outputs_schema"])
|
|
|
+
|
|
|
+
|
|
|
+async def run_expert_backward(
|
|
|
+ uid: ModuleUID,
|
|
|
+ stub: StubBase,
|
|
|
+ rpc_info: RPCInfo,
|
|
|
+ intemediate_inputs: List[torch.Tensor],
|
|
|
+ grad_outputs: List[torch.Tensor],
|
|
|
+) -> Sequence[torch.Tensor]:
|
|
|
+ """
|
|
|
+ Serializes grad outputs and calls "expert_backward".
|
|
|
+ Mostly adapted from https://github.com/learning-at-home/hivemind/blob/7a7c93aefffc9494c39e7b170c07cb06d8c09c4c/hivemind/moe/client/expert.py#L221
|
|
|
+ but without RemoteExpertWorker.run_coroutine() call that leads to deadlock here.
|
|
|
+ """
|
|
|
+
|
|
|
+ grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs)
|
|
|
+ inputs_and_grad_outputs = tuple(nested_flatten((intemediate_inputs, grad_outputs_cpu)))
|
|
|
+ backward_schema = tuple(nested_flatten((rpc_info["forward_schema"], rpc_info["outputs_schema"])))
|
|
|
+
|
|
|
+ serialized_tensors = (
|
|
|
+ serialize_torch_tensor(tensor, proto.compression)
|
|
|
+ for tensor, proto in zip(inputs_and_grad_outputs, backward_schema)
|
|
|
+ )
|
|
|
+ deserialized_grad_inputs = await expert_backward(uid, inputs_and_grad_outputs, serialized_tensors, stub)
|
|
|
+ return deserialized_grad_inputs
|
|
|
+
|
|
|
+
|
|
|
+async def sequential_forward(
|
|
|
+ inputs: torch.Tensor, sequence_manager: RemoteSequenceManager, start_index: int = 0, end_index: Optional[int] = None
|
|
|
+) -> Tuple[torch.Tensor, Sequence[torch.Tensor], Sequence[RemoteSpanInfo]]:
|
|
|
+ """
|
|
|
+ Constructs a routing path from <start_index> to <end_index>.
|
|
|
+ Performs chained forward for each subsequence of blocks on the path.
|
|
|
+ If some subsequence fails, reconstructs the remaining path and tries to finish the forward.
|
|
|
+ """
|
|
|
+
|
|
|
+ assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3
|
|
|
+
|
|
|
+ end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
|
|
|
+ assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)
|
|
|
+
|
|
|
+ sequences = sequence_manager.make_sequence(start_index, end_index)
|
|
|
+ intermediate_inputs = []
|
|
|
+ done_sequences = []
|
|
|
+
|
|
|
+ while len(sequences) > 0:
|
|
|
+ while True:
|
|
|
+ try:
|
|
|
+ span = sequences.pop(0)
|
|
|
+ span_uids: str = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start : span.end])
|
|
|
+ stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
|
|
|
+ (outputs,) = await run_expert_forward(span_uids, stub, sequence_manager.rpc_info, inputs)
|
|
|
+
|
|
|
+ assert isinstance(outputs, torch.Tensor)
|
|
|
+ assert outputs.shape == inputs.shape, f"Expected output {inputs.shape}, got {outputs.shape}"
|
|
|
+
|
|
|
+ # Save intermediate inputs and subsequences if the forward is already done for them
|
|
|
+ intermediate_inputs.append(inputs)
|
|
|
+ done_sequences.append(span)
|
|
|
+
|
|
|
+ inputs = outputs
|
|
|
+ break
|
|
|
+ except Exception as e:
|
|
|
+ logging.debug(f"Caught {e} when running forward for chain {span.start}-{span.end}", exc_info=True)
|
|
|
+ backup_sequences = sequence_manager.make_sequence(span.start)
|
|
|
+ assert backup_sequences[0].start == span.start
|
|
|
+ sequences = backup_sequences
|
|
|
+
|
|
|
+ return outputs, intermediate_inputs, done_sequences
|
|
|
+
|
|
|
+
|
|
|
+async def sequential_backward(
|
|
|
+ grad_outputs: Sequence[torch.Tensor],
|
|
|
+ intermediate_inputs: Sequence[torch.Tensor],
|
|
|
+ forward_sequences: Sequence[RemoteSpanInfo],
|
|
|
+ sequence_manager: RemoteSequenceManager,
|
|
|
+) -> Sequence[torch.Tensor]:
|
|
|
+ """
|
|
|
+ Performs chained backward for each forward subsequence.
|
|
|
+ If some subsequence fails, reconstructs the particular sub-path and recovers the backward.
|
|
|
+ """
|
|
|
+
|
|
|
+ assert len(intermediate_inputs) == len(forward_sequences)
|
|
|
+ # TODO think about grads w.r.t. deep prompts
|
|
|
+
|
|
|
+ while len(forward_sequences) > 0 and len(intermediate_inputs) > 0:
|
|
|
+ while True:
|
|
|
+ try:
|
|
|
+ inputs = intermediate_inputs.pop(-1)
|
|
|
+ span = forward_sequences.pop(-1)
|
|
|
+
|
|
|
+ span_uids: str = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start : span.end])
|
|
|
+ stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
|
|
|
+
|
|
|
+ grad_outputs = await run_expert_backward(
|
|
|
+ span_uids, stub, sequence_manager.rpc_info, inputs, grad_outputs
|
|
|
+ )
|
|
|
+ break
|
|
|
+ except Exception as e:
|
|
|
+ logging.warning(f"Caught {e} when running backward for chain {span.start}-{span.end}", exc_info=True)
|
|
|
+ _, backup_intermediate_inputs, backup_forward_sequences = await sequential_forward(
|
|
|
+ inputs, sequence_manager, start_index=span.start, end_index=span.end
|
|
|
+ )
|
|
|
+
|
|
|
+ assert len(intermediate_inputs) == len(forward_sequences)
|
|
|
+ assert backup_forward_sequences[0].start == span.start
|
|
|
+ assert backup_forward_sequences[-1].end == span.end
|
|
|
+
|
|
|
+ forward_sequences.extend(backup_forward_sequences)
|
|
|
+ intermediate_inputs.extend(backup_intermediate_inputs)
|
|
|
+ return grad_outputs
|
|
|
+
|
|
|
+
|
|
|
+async def _gather_forward(input_batches, sequence_manager):
|
|
|
+ """Wrapper for asyncio.gather to perform parallel sequential forwards"""
|
|
|
+ return await asyncio.gather(*[sequential_forward(input_batch, sequence_manager) for input_batch in input_batches])
|
|
|
+
|
|
|
+
|
|
|
+async def _gather_backward(grad_output_batches, intermediate_input_batches, forward_sequences, sequence_manager):
|
|
|
+ """Wrapper for asyncio.gather to perform parallel sequential backwards"""
|
|
|
+ return await asyncio.gather(
|
|
|
+ *[
|
|
|
+ sequential_backward((grad_output,), input_batch, spans, sequence_manager)
|
|
|
+ for grad_output, input_batch, spans in zip(
|
|
|
+ grad_output_batches, intermediate_input_batches, forward_sequences
|
|
|
+ )
|
|
|
+ ]
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+class _RemoteSequentialAutogradFunction(torch.autograd.Function):
|
|
|
+ """
|
|
|
+ PyTorch autograd function that provides forward and backward calls for the entire sequence of remote transformer blocks.
|
|
|
+ This function splits input data into batches with <MAX_TOKENS_IN_BATCH> and performs efficient parallel processing.
|
|
|
+ """
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def forward(ctx, inputs: torch.Tensor, sequence_manager: RemoteSequenceManager):
|
|
|
+ batch_size = max(MAX_TOKENS_IN_BATCH // inputs.shape[1], 1)
|
|
|
+ input_batches: Sequence[torch.Tensor] = inputs.split(batch_size)
|
|
|
+
|
|
|
+ sequence_manager.rpc_info # lazy init
|
|
|
+ outputs = RemoteExpertWorker.run_coroutine(_gather_forward(input_batches, sequence_manager))
|
|
|
+ assert len(outputs) == len(input_batches)
|
|
|
+
|
|
|
+ output_batches = [output[0] for output in outputs]
|
|
|
+ intemediate_input_batches = [output[1] for output in outputs]
|
|
|
+ sequences_for_batches = [output[2] for output in outputs]
|
|
|
+
|
|
|
+ ctx.sequence_manager = sequence_manager
|
|
|
+ ctx.intemediate_input_batches = intemediate_input_batches
|
|
|
+ ctx.sequences_for_batches = sequences_for_batches
|
|
|
+ return torch.cat(output_batches, dim=0)
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def backward(ctx, grad_outputs: torch.Tensor):
|
|
|
+ intermediate_input_batches: List[Sequence[torch.Tensor]] = ctx.intemediate_input_batches
|
|
|
+ forward_sequences: List[Sequence[RemoteSpanInfo]] = ctx.sequences_for_batches
|
|
|
+ ctx.sequence_manager.rpc_info # lazy init
|
|
|
+
|
|
|
+ batch_size = max(MAX_TOKENS_IN_BATCH // grad_outputs.shape[1], 1)
|
|
|
+ grad_output_batches: Sequence[torch.Tensor] = grad_outputs.split(batch_size)
|
|
|
+ assert len(intermediate_input_batches) == len(grad_output_batches) == len(forward_sequences)
|
|
|
+
|
|
|
+ grad_input_batches = RemoteExpertWorker.run_coroutine(
|
|
|
+ _gather_backward(grad_output_batches, intermediate_input_batches, forward_sequences, ctx.sequence_manager)
|
|
|
+ )
|
|
|
+ grad_inputs = [grad_input_batch[0] for grad_input_batch in grad_input_batches]
|
|
|
+ grad_inputs = torch.cat(grad_inputs, dim=0)
|
|
|
+ return (grad_inputs, None)
|