Browse Source

[test remotely in CI]

justheuristic 3 năm trước cách đây
mục cha
commit
48f65a1c8c
1 tập tin đã thay đổi với 48 bổ sung0 xóa
  1. 48 0
      tests/test_remote_sequential.py

+ 48 - 0
tests/test_remote_sequential.py

@@ -4,6 +4,7 @@ from hivemind import DHT, get_logger, use_hivemind_log_handler
 from test_utils import *
 
 from src import RemoteSequential
+from src.bloom.from_pretrained import load_pretrained_block
 from src.client.remote_model import DistributedBloomConfig
 
 use_hivemind_log_handler("in_root_logger")
@@ -41,3 +42,50 @@ def test_remote_sequential():
 
     (second_half_outputs * grad_proj).sum().backward()
     assert torch.allclose(test_inputs.grad, full_grad)
+
+
+@pytest.mark.forked
+def test_remote_sequential_prompts(batch_size=2, seq_len=5, pre_seq_len=3):
+    config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
+    dht = DHT(initial_peers=config.initial_peers, client_mode=True, start=True)
+    remote_sequential = RemoteSequential(config, dht)
+
+    inputs = torch.randn(batch_size, seq_len, config.hidden_size)
+    output_proj = torch.randn(batch_size, seq_len + pre_seq_len, config.hidden_size)
+    input_prompts = torch.randn(batch_size, pre_seq_len, config.hidden_size, requires_grad=True)
+    intermediate_prompts = torch.randn(config.n_layer, batch_size, pre_seq_len, config.hidden_size, requires_grad=True)
+
+    input_prompts = input_prompts.detach().requires_grad_(True)
+    intermediate_prompts = intermediate_prompts.detach().requires_grad_(True)
+    with torch.no_grad():
+        intermediate_prompts[...] = torch.randn_like(intermediate_prompts)
+
+    inputs_with_prompts = torch.cat([inputs, input_prompts], dim=1)
+    assert inputs_with_prompts.shape == (batch_size, seq_len + pre_seq_len, config.hidden_size)
+
+    outputs = remote_sequential(inputs_with_prompts, prompts=intermediate_prompts)
+
+    (outputs * output_proj).sum().backward()
+    assert intermediate_prompts.grad is not None
+
+    input_prompts_ref = input_prompts.clone().detach().requires_grad_(True)
+    intermediate_prompts_ref = intermediate_prompts.clone().detach().requires_grad_(True)
+
+    assert input_prompts_ref.grad is None
+    assert intermediate_prompts_ref.grad is None
+
+    outputs_ref = torch.cat([inputs, input_prompts_ref], dim=1)
+    for block_index in range(config.n_layer):
+        block_prompt = intermediate_prompts_ref[block_index]
+        outputs_ref[:, : block_prompt.shape[1]] += block_prompt
+
+        block = load_pretrained_block(MODEL_NAME, block_index=block_index, torch_dtype=torch.float32)
+        (outputs_ref,) = block(outputs_ref)
+
+    assert torch.allclose(outputs_ref, outputs)
+
+    (outputs_ref * output_proj).sum().backward()
+    assert input_prompts_ref.grad is not None
+    assert torch.allclose(input_prompts_ref.grad, input_prompts.grad)
+    assert intermediate_prompts_ref.grad is not None
+    assert torch.allclose(intermediate_prompts_ref.grad, intermediate_prompts.grad)