Ver Fonte

Fix fine-tuning notebooks intros (#194)

The notebook intros were outdated and mentioned the 6B model, while the actual code already runs the 176B model. This led to confusion among our users in Discord.
Alexander Borzunov há 2 anos atrás
pai
commit
487411e87e

+ 2 - 2
examples/prompt-tuning-personachat.ipynb

@@ -11,9 +11,9 @@
     "\n",
     "# Distributed Bloom for Text Generation using Prompt Tuning\n",
     "\n",
-    "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt a test 6B version of the [BLOOM](https://huggingface.co/bigscience/bloom) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the BLOOM blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
+    "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt the [BLOOM](https://huggingface.co/bigscience/bloom) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the BLOOM blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
     "\n",
-    "We will adapt the BLOOM model for the chatbot task using the [Personachat](https://huggingface.co/datasets/bavard/personachat_truecased) dataset. For a given dialogue context, the model has to provide a relevant answer.\n",
+    "We will adapt BLOOM for the task of creating a chatbot with a specific personality using the [Personachat](https://huggingface.co/datasets/bavard/personachat_truecased) dataset. For a given dialogue context, the model has to provide a relevant answer.\n",
     "\n",
     "To use this notebook in Colab:\n",
     "\n",

+ 2 - 2
examples/prompt-tuning-sst2.ipynb

@@ -11,9 +11,9 @@
     "\n",
     "# Distributed Bloom for Text Classification using Prompt Tuning\n",
     "\n",
-    "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt a test 6B version of the [BLOOM](https://huggingface.co/bigscience/bloom) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the BLOOM blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
+    "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt the [BLOOM](https://huggingface.co/bigscience/bloom) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the BLOOM blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
     "\n",
-    "We will adapt the BLOOM model for the classification task using the [SST-2 dataset](https://nlp.stanford.edu/sentiment/). This dataset is a binary classification task, where the goal is to predict whether a sentence is positive or negative. The SST-2 dataset is a subset of the Stanford Sentiment Treebank, and it is available in the [Hugging Face Datasets](https://huggingface.co/datasets) library.\n",
+    "We will adapt BLOOM for the classification task using the [SST-2 dataset](https://nlp.stanford.edu/sentiment/). This dataset is a binary classification task, where the goal is to predict whether a sentence is positive or negative. The SST-2 dataset is a subset of the Stanford Sentiment Treebank, and it is available in the [Hugging Face Datasets](https://huggingface.co/datasets) library.\n",
     "\n",
     "To use this notebook in Colab:\n",
     "\n",