|
@@ -0,0 +1,55 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+
|
|
|
+import argparse
|
|
|
+import multiprocessing as mp
|
|
|
+from time import perf_counter
|
|
|
+
|
|
|
+import torch
|
|
|
+from hivemind.utils.logging import get_logger
|
|
|
+from petals import DistributedBloomForCausalLM
|
|
|
+from transformers import BloomTokenizerFast
|
|
|
+
|
|
|
+logger = get_logger()
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ parser = argparse.ArgumentParser()
|
|
|
+ parser.add_argument("--model", type=str, default="bigscience/bloom-petals")
|
|
|
+ parser.add_argument("--initial_peers", type=str, nargs='+', default=["/ip4/185.244.175.92/tcp/31337/p2p/QmehSoMKScoMF3HczLwaLVnw2Lgsap4bhAMrULEzGc1fSV"])
|
|
|
+ parser.add_argument("-p", "--n_processes", type=int, required=True)
|
|
|
+ parser.add_argument("-l", "--seq_len", type=int, default=128)
|
|
|
+ parser.add_argument("-s", "--n_steps", type=int, default=100)
|
|
|
+ parser.add_argument("-b", "--batch_size", type=int, required=True)
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ processes = [mp.Process(target=benchmark_forward, args=(i, args,)) for i in range(args.n_processes)]
|
|
|
+ for proc in processes:
|
|
|
+ proc.start()
|
|
|
+ for proc in processes:
|
|
|
+ proc.join()
|
|
|
+
|
|
|
+
|
|
|
+@torch.inference_mode()
|
|
|
+def benchmark_forward(process_idx, args):
|
|
|
+ tokenizer = BloomTokenizerFast.from_pretrained(args.model)
|
|
|
+ model = DistributedBloomForCausalLM.from_pretrained(args.model)#, initial_peers=args.initial_peers)
|
|
|
+ logger.info(f"Created model: {process_idx=} {model.device=}")
|
|
|
+
|
|
|
+ torch.manual_seed(42)
|
|
|
+ for step in range(args.n_steps):
|
|
|
+ input_ids = torch.randint(100, 10000, size=(args.batch_size, args.seq_len))
|
|
|
+ logger.info(f"Fwd begin {input_ids.shape=}")
|
|
|
+ outputs = model.forward(input_ids)
|
|
|
+ logger.info("Fwd end")
|
|
|
+
|
|
|
+ if step == 0:
|
|
|
+ start_time = perf_counter()
|
|
|
+ else:
|
|
|
+ speed = step / (perf_counter() - start_time) * input_ids.numel()
|
|
|
+ logger.info(f"{process_idx=} {step=} {speed=:.3f}")
|
|
|
+
|
|
|
+ logger.info(f"Final result: {process_idx=} {speed=:.3f}")
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|