瀏覽代碼

Remove unused imports and attributes (#324)

* Remove unused imports and attributes
Max Ryabinin 2 年之前
父節點
當前提交
3e7ae5116d

+ 0 - 1
src/petals/client/inference_session.py

@@ -2,7 +2,6 @@ from __future__ import annotations
 
 
 import asyncio
 import asyncio
 import itertools
 import itertools
-import logging
 import time
 import time
 from typing import AsyncIterator, List, Optional
 from typing import AsyncIterator, List, Optional
 
 

+ 1 - 2
src/petals/client/remote_model.py

@@ -1,6 +1,5 @@
-import os
 from contextlib import contextmanager
 from contextlib import contextmanager
-from typing import Collection, List, Optional, Union
+from typing import List, Optional, Union
 
 
 import hivemind
 import hivemind
 import torch
 import torch

+ 0 - 1
src/petals/client/remote_sequential.py

@@ -4,7 +4,6 @@ from typing import Optional, Union
 
 
 import torch
 import torch
 from hivemind import DHT, get_logger
 from hivemind import DHT, get_logger
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
 from torch import nn
 from torch import nn
 
 
 import petals.client
 import petals.client

+ 1 - 1
src/petals/client/routing/sequence_manager.py

@@ -11,7 +11,7 @@ from typing import Any, Collection, Dict, List, Optional, Sequence, Union
 from weakref import WeakMethod
 from weakref import WeakMethod
 
 
 import numpy as np
 import numpy as np
-from hivemind import DHT, P2P, MSGPackSerializer, PeerID, get_dht_time
+from hivemind import DHT, P2P, MSGPackSerializer, PeerID
 from hivemind.dht.node import Blacklist
 from hivemind.dht.node import Blacklist
 from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
 from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
 from hivemind.proto import runtime_pb2
 from hivemind.proto import runtime_pb2

+ 0 - 1
src/petals/client/sequential_autograd.py

@@ -3,7 +3,6 @@ A PyTorch autograd function that runs forward/backward on a sequence of remote s
 """
 """
 import asyncio
 import asyncio
 import itertools
 import itertools
-import logging
 from collections import deque
 from collections import deque
 from typing import List, Optional, Sequence, Tuple
 from typing import List, Optional, Sequence, Tuple
 
 

+ 0 - 2
src/petals/dht_utils.py

@@ -8,11 +8,9 @@ from functools import partial
 from typing import Dict, List, Optional, Sequence, Union
 from typing import Dict, List, Optional, Sequence, Union
 
 
 from hivemind.dht import DHT, DHTNode, DHTValue
 from hivemind.dht import DHT, DHTNode, DHTValue
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
 from hivemind.p2p import PeerID
 from hivemind.p2p import PeerID
 from hivemind.utils import DHTExpiration, MPFuture, get_dht_time, get_logger
 from hivemind.utils import DHTExpiration, MPFuture, get_dht_time, get_logger
 
 
-import petals.client
 from petals.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ModuleUID, RemoteModuleInfo, ServerInfo, ServerState
 from petals.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ModuleUID, RemoteModuleInfo, ServerInfo, ServerState
 
 
 logger = get_logger(__name__)
 logger = get_logger(__name__)

+ 1 - 1
src/petals/server/backend.py

@@ -16,7 +16,7 @@ from transformers import BloomConfig
 from transformers.models.bloom.modeling_bloom import BloomAttention
 from transformers.models.bloom.modeling_bloom import BloomAttention
 
 
 from petals.data_structures import InferenceMetadata
 from petals.data_structures import InferenceMetadata
-from petals.server.memory_cache import Handle, MemoryCache
+from petals.server.memory_cache import MemoryCache
 from petals.server.task_pool import PrioritizedTaskPool
 from petals.server.task_pool import PrioritizedTaskPool
 from petals.utils.misc import is_dummy
 from petals.utils.misc import is_dummy
 
 

+ 2 - 2
src/petals/server/memory_cache.py

@@ -10,7 +10,7 @@ import ctypes
 import multiprocessing as mp
 import multiprocessing as mp
 import os
 import os
 import time
 import time
-from typing import AsyncContextManager, Dict, Optional, Sequence, Tuple
+from typing import AsyncContextManager, Dict, Optional, Sequence
 
 
 import hivemind
 import hivemind
 import torch
 import torch
@@ -29,7 +29,7 @@ class MemoryCache:
     def __init__(self, max_size_bytes: Optional[int], alloc_timeout: float):
     def __init__(self, max_size_bytes: Optional[int], alloc_timeout: float):
         self.max_size_bytes = max_size_bytes if max_size_bytes is not None else (2**64 - 1)
         self.max_size_bytes = max_size_bytes if max_size_bytes is not None else (2**64 - 1)
         self.alloc_timeout = alloc_timeout
         self.alloc_timeout = alloc_timeout
-        self._lock_metadata, self.size_decreased_event = mp.Lock(), mp.Event()
+        self._lock_metadata = mp.Lock()
         self._current_size = mp.Value(ctypes.c_int64, 0, lock=False)
         self._current_size = mp.Value(ctypes.c_int64, 0, lock=False)
         self._handle_counter = mp.Value(ctypes.c_int64, 0, lock=False)
         self._handle_counter = mp.Value(ctypes.c_int64, 0, lock=False)
         self._allocated_tensors: Dict[Handle, torch.Tensor] = {}
         self._allocated_tensors: Dict[Handle, torch.Tensor] = {}

+ 0 - 1
src/petals/server/reachability.py

@@ -5,7 +5,6 @@ import time
 from concurrent.futures import Future
 from concurrent.futures import Future
 from contextlib import asynccontextmanager
 from contextlib import asynccontextmanager
 from functools import partial
 from functools import partial
-from secrets import token_hex
 from typing import Optional
 from typing import Optional
 
 
 import requests
 import requests

+ 0 - 5
src/petals/server/server.py

@@ -8,7 +8,6 @@ import threading
 import time
 import time
 from typing import Dict, List, Optional, Sequence, Union
 from typing import Dict, List, Optional, Sequence, Union
 
 
-import numpy as np
 import torch
 import torch
 from hivemind import DHT, MAX_DHT_TIME_DISCREPANCY_SECONDS, BatchTensorDescriptor, get_dht_time
 from hivemind import DHT, MAX_DHT_TIME_DISCREPANCY_SECONDS, BatchTensorDescriptor, get_dht_time
 from hivemind.moe.server.layers import add_custom_models_from_file
 from hivemind.moe.server.layers import add_custom_models_from_file
@@ -502,7 +501,6 @@ class ModuleContainer(threading.Thread):
             expiration=expiration,
             expiration=expiration,
             daemon=True,
             daemon=True,
         )
         )
-        self.checkpoint_saver = None  # no need to save checkpoints since we do not change model state
 
 
         if start:
         if start:
             self.run_in_background(await_ready=True)
             self.run_in_background(await_ready=True)
@@ -517,9 +515,6 @@ class ModuleContainer(threading.Thread):
 
 
         self.online_announcer.start()
         self.online_announcer.start()
 
 
-        if self.checkpoint_saver is not None:
-            self.checkpoint_saver.start()
-
         for handler in self.conn_handlers:
         for handler in self.conn_handlers:
             handler.run_in_background()
             handler.run_in_background()
 
 

+ 0 - 1
src/petals/utils/generation_algorithms.py

@@ -85,7 +85,6 @@ class NucleusAlgorithm(SamplingAlgorithm):
 class BeamSearchAlgorithm(DecodingAlgorithm):
 class BeamSearchAlgorithm(DecodingAlgorithm):
     def __init__(self, num_beams: int, batch_size: int) -> None:
     def __init__(self, num_beams: int, batch_size: int) -> None:
         self.num_beams = num_beams
         self.num_beams = num_beams
-        self._cur_num_beams = 1
         self.batch_size = batch_size
         self.batch_size = batch_size
 
 
         self._batch_beams = [list() for _ in range(batch_size)]
         self._batch_beams = [list() for _ in range(batch_size)]

+ 0 - 1
src/petals/utils/logging.py

@@ -1,4 +1,3 @@
-import importlib
 import os
 import os
 
 
 from hivemind.utils import logging as hm_logging
 from hivemind.utils import logging as hm_logging

+ 0 - 1
tests/test_block_exact_match.py

@@ -8,7 +8,6 @@ from transformers.models.bloom.configuration_bloom import BloomConfig
 from petals.bloom.block import WrappedBloomBlock
 from petals.bloom.block import WrappedBloomBlock
 from petals.bloom.from_pretrained import DTYPE_MAP, _load_state_dict, load_pretrained_block
 from petals.bloom.from_pretrained import DTYPE_MAP, _load_state_dict, load_pretrained_block
 from petals.client import DistributedBloomConfig, RemoteSequential
 from petals.client import DistributedBloomConfig, RemoteSequential
-from petals.data_structures import UID_DELIMITER
 from test_utils import *
 from test_utils import *
 
 
 
 

+ 0 - 1
tests/test_server_stats.py

@@ -5,7 +5,6 @@ import pytest
 import torch
 import torch
 
 
 from petals.client import DistributedBloomConfig, RemoteSequential
 from petals.client import DistributedBloomConfig, RemoteSequential
-from petals.data_structures import UID_DELIMITER
 from petals.server.handler import CACHE_TOKENS_AVAILABLE
 from petals.server.handler import CACHE_TOKENS_AVAILABLE
 from test_utils import *
 from test_utils import *