|
@@ -0,0 +1,42 @@
|
|
|
|
+import os
|
|
|
|
+
|
|
|
|
+import hivemind
|
|
|
|
+import torch
|
|
|
|
+
|
|
|
|
+from src.bloom.from_pretrained import load_pretrained_block
|
|
|
|
+from src.client.remote_block import RemoteTransformerBlock, get_remote_module
|
|
|
|
+
|
|
|
|
+INITIAL_PEERS = os.environ.get("INITIAL_PEERS")
|
|
|
|
+if not INITIAL_PEERS:
|
|
|
|
+ raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids")
|
|
|
|
+INITIAL_PEERS = INITIAL_PEERS.split()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+BLOCK_UID = os.environ.get("BLOCK_UID")
|
|
|
|
+if not BLOCK_UID:
|
|
|
|
+ raise RuntimeError("Must specify BLOCK_UID as an index of a transformer block to be tested")
|
|
|
|
+
|
|
|
|
+REF_NAME = os.environ.get("REF_NAME", "bigscience/test-bloomd-6b3")
|
|
|
|
+REF_INDEX = int(os.environ.get("REF_INDEX", BLOCK_UID[-1].split(".")[-1]))
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
|
|
|
|
+ dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
|
|
+ (remote_block,) = get_remote_module(dht, [BLOCK_UID])
|
|
|
|
+ assert remote_block is not None, f"Could not find {BLOCK_UID} in DHT"
|
|
|
|
+ assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
|
+
|
|
|
|
+ inputs = torch.randn(1, 8, 4096)
|
|
|
|
+ (outputs_forward,) = remote_block(inputs)
|
|
|
|
+
|
|
|
|
+ outputs_inference = []
|
|
|
|
+ with remote_block.begin_inference_session() as sess:
|
|
|
|
+ for i in range(inputs.shape[1]):
|
|
|
|
+ outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
|
|
|
+ outputs_inference = torch.cat(outputs_inference, dim=1)
|
|
|
|
+
|
|
|
|
+ ref_block = load_pretrained_block(REF_NAME, REF_INDEX, torch_dtype=torch.float32)
|
|
|
|
+ (outputs_local,) = ref_block(inputs)
|
|
|
|
+
|
|
|
|
+ assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
|
|
|
|
+ assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)
|