|
@@ -3,17 +3,19 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "a07e0f5e",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "a07e0f5e"
|
|
|
+ },
|
|
|
"source": [
|
|
|
"<div>\n",
|
|
|
"<img src=\"https://camo.githubusercontent.com/473dd9f992924d27457650251786464f72e54121ac6e9210add0f483ca849277/68747470733a2f2f692e696d6775722e636f6d2f3765523750616e2e706e67\" width=\"40%\"> \n",
|
|
|
"</div>\n",
|
|
|
"\n",
|
|
|
- "# Distributed Bloom for Text Classification using Prompt Tuning\n",
|
|
|
+ "# Distributed LLaMA for Text Classification using Prompt Tuning\n",
|
|
|
"\n",
|
|
|
- "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt the [BLOOM](https://huggingface.co/bigscience/bloom) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the BLOOM blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
|
|
|
+ "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt the [LLaMA](https://github.com/facebookresearch/llama) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the LLaMA blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
|
|
|
"\n",
|
|
|
- "We will adapt BLOOM for the classification task using the [SST-2 dataset](https://nlp.stanford.edu/sentiment/). This dataset is a binary classification task, where the goal is to predict whether a sentence is positive or negative. The SST-2 dataset is a subset of the Stanford Sentiment Treebank, and it is available in the [Hugging Face Datasets](https://huggingface.co/datasets) library.\n",
|
|
|
+ "We will adapt LLaMA for the classification task using the [SST-2 dataset](https://nlp.stanford.edu/sentiment/). This dataset is a binary classification task, where the goal is to predict whether a sentence is positive or negative. The SST-2 dataset is a subset of the Stanford Sentiment Treebank, and it is available in the [Hugging Face Datasets](https://huggingface.co/datasets) library.\n",
|
|
|
"\n",
|
|
|
"To use this notebook in Colab:\n",
|
|
|
"\n",
|
|
@@ -24,7 +26,9 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "a3f8526f",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "a3f8526f"
|
|
|
+ },
|
|
|
"source": [
|
|
|
"First, we have to prepare all dependencies."
|
|
|
]
|
|
@@ -33,17 +37,22 @@
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "73bbc648",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "73bbc648"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
- "%pip install -q petals datasets wandb scikit-learn"
|
|
|
+ "%pip install -q datasets wandb scikit-learn\n",
|
|
|
+ "%pip install -q git+https://github.com/bigscience-workshop/petals@main"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "b4ab6ca7",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "b4ab6ca7"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"import os\n",
|
|
@@ -57,15 +66,19 @@
|
|
|
"from tqdm import tqdm\n",
|
|
|
"from torch.optim import AdamW\n",
|
|
|
"from torch.utils.data import DataLoader\n",
|
|
|
- "from transformers import BloomTokenizerFast, get_scheduler\n",
|
|
|
+ "from transformers import LlamaTokenizer, get_scheduler, set_seed\n",
|
|
|
"\n",
|
|
|
- "from petals import DistributedBloomForSequenceClassification"
|
|
|
+ "from petals import DistributedLlamaForSequenceClassification\n",
|
|
|
+ "\n",
|
|
|
+ "set_seed(0)"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "1bf07b5d",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "1bf07b5d"
|
|
|
+ },
|
|
|
"source": [
|
|
|
"Let's set some hyperparameters for training:"
|
|
|
]
|
|
@@ -74,14 +87,15 @@
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "f04ba4d2",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "f04ba4d2"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"# Choose a model you'd like to prompt-tune. We recommend starting with\n",
|
|
|
- "# the smaller 7.1B version of BLOOM (bigscience/bloom-7b1-petals) for faster prototyping.\n",
|
|
|
- "# Once your code is ready, you can switch to full-scale\n",
|
|
|
- "# 176B-parameter BLOOM (bigscience/bloom-petals) or BLOOMZ (bigscience/bloomz-petals).\n",
|
|
|
- "MODEL_NAME = \"bigscience/bloom-7b1-petals\"\n",
|
|
|
+ "# a smaller model (bigscience/bloom-7b1-petals) for faster prototyping.\n",
|
|
|
+ "# The code below uses LLaMA-65B.\n",
|
|
|
+ "MODEL_NAME = \"enoch/llama-65b-hf\"\n",
|
|
|
"\n",
|
|
|
"# Choose a prompt-tuning mode ('ptune' or 'deep_ptune').\n",
|
|
|
"# The latter fine-tunes separate prefixes for each transformer block,\n",
|
|
@@ -89,9 +103,9 @@
|
|
|
"# See this paper for details of how it works: https://arxiv.org/pdf/2110.07602.pdf\n",
|
|
|
"TUNING_MODE = 'ptune'\n",
|
|
|
"\n",
|
|
|
- "NUM_PREFIX_TOKENS = 16\n",
|
|
|
+ "NUM_PREFIX_TOKENS = 8\n",
|
|
|
"DEVICE = 'cuda'\n",
|
|
|
- "BATCH_SIZE = 16\n",
|
|
|
+ "BATCH_SIZE = 32\n",
|
|
|
"LR = 1e-2\n",
|
|
|
"WEIGHT_DECAY = 0.0\n",
|
|
|
"NUM_EPOCHS = 3\n",
|
|
@@ -102,32 +116,40 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "d38316bd",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "d38316bd"
|
|
|
+ },
|
|
|
"source": [
|
|
|
- "Prepare tokenizer and distributed model, connect it to servers."
|
|
|
+ "Here, we prepare tokenizer and distributed model and connect it to the public swarm."
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "03c6e53e",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "03c6e53e"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
- "tokenizer = BloomTokenizerFast.from_pretrained(MODEL_NAME)\n",
|
|
|
+ "tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)\n",
|
|
|
"tokenizer.padding_side = 'right'\n",
|
|
|
"tokenizer.model_max_length = MODEL_MAX_LENGTH\n",
|
|
|
- "model = DistributedBloomForSequenceClassification.from_pretrained(\n",
|
|
|
+ "tokenizer.pad_token = tokenizer.unk_token\n",
|
|
|
+ "model = DistributedLlamaForSequenceClassification.from_pretrained(\n",
|
|
|
" MODEL_NAME,\n",
|
|
|
" pre_seq_len=NUM_PREFIX_TOKENS,\n",
|
|
|
" tuning_mode=TUNING_MODE\n",
|
|
|
- ").to(DEVICE)"
|
|
|
+ ").float().to(DEVICE)\n",
|
|
|
+ "model.config.pad_token_id = tokenizer.pad_token_id"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "042e3786",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "042e3786"
|
|
|
+ },
|
|
|
"source": [
|
|
|
"Let's prepare the SST-2 dataset. We need just one preprocessing function to tokenize the dataset."
|
|
|
]
|
|
@@ -136,7 +158,9 @@
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "9c44d516",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "9c44d516"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"task = 'sst2'\n",
|
|
@@ -144,7 +168,7 @@
|
|
|
"dataset = load_dataset(\"glue\", task)\n",
|
|
|
"\n",
|
|
|
"def preprocess_function(examples):\n",
|
|
|
- " return tokenizer(examples[\"sentence\"], padding='max_length', truncation=True)\n",
|
|
|
+ " return tokenizer(examples[\"sentence\"], padding='max_length', truncation=True, return_token_type_ids=False)\n",
|
|
|
"\n",
|
|
|
"tokenized_datasets = dataset.map(preprocess_function, batched=True)\n",
|
|
|
"tokenized_datasets = tokenized_datasets.remove_columns([\"sentence\", \"idx\", \"attention_mask\"])\n",
|
|
@@ -161,16 +185,20 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "2a3f3590",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "2a3f3590"
|
|
|
+ },
|
|
|
"source": [
|
|
|
- "To check training, we need a metric function. For SST-2 task is accuracy. We will load it from the datasets library."
|
|
|
+ "To monitor training, we need the metric function. For SST-2, the target metric is accuracy. We will load it from the datasets library."
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "1e1812be",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "1e1812be"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"metric = load_metric('glue', task)\n",
|
|
@@ -179,7 +207,7 @@
|
|
|
" model.eval()\n",
|
|
|
" for batch in dataloader:\n",
|
|
|
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
|
|
- " \n",
|
|
|
+ "\n",
|
|
|
" with torch.no_grad():\n",
|
|
|
" outputs = model(**batch)\n",
|
|
|
"\n",
|
|
@@ -193,16 +221,20 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "ef4323fd",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "ef4323fd"
|
|
|
+ },
|
|
|
"source": [
|
|
|
- "Before setting up optimizers, check the model parameters that will be trained."
|
|
|
+ "Before setting up optimizers, let's check the model parameters that will be trained."
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "9cc0ba34",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "9cc0ba34"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"for n, p in model.named_parameters():\n",
|
|
@@ -213,29 +245,35 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "59cffce7",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "59cffce7"
|
|
|
+ },
|
|
|
"source": [
|
|
|
- "The optimizer will only work on **prompts**, they are only trainable parameters. Let's initialize optimizer and learning rate scheduler."
|
|
|
+ "The optimizer will only work on **prompts and classifier head**: they are only trainable parameters. Let's initialize the optimizer and the learning rate scheduler."
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "ef9bf344",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "ef9bf344"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"optimizer = AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY)\n",
|
|
|
"\n",
|
|
|
"lr_scheduler = get_scheduler(\n",
|
|
|
- " name=\"linear\", optimizer=optimizer, num_warmup_steps=0, num_training_steps=len(train_dataloader)\n",
|
|
|
+ " name=\"linear\", optimizer=optimizer, num_warmup_steps=0, num_training_steps=len(train_dataloader) * NUM_EPOCHS\n",
|
|
|
")"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "423c56d5",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "423c56d5"
|
|
|
+ },
|
|
|
"source": [
|
|
|
"Let's initialize wandb for logging and start the training loop!"
|
|
|
]
|
|
@@ -244,7 +282,9 @@
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
"id": "d9e46807",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "d9e46807"
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"wandb.init(\n",
|
|
@@ -260,20 +300,24 @@
|
|
|
" }\n",
|
|
|
")\n",
|
|
|
"\n",
|
|
|
+ "scaler = torch.cuda.amp.GradScaler()\n",
|
|
|
+ "\n",
|
|
|
"for epoch in range(NUM_EPOCHS):\n",
|
|
|
+ " model.train()\n",
|
|
|
" for batch in tqdm(train_dataloader):\n",
|
|
|
" batch = {k: v.to(DEVICE) for k, v in batch.items()}\n",
|
|
|
"\n",
|
|
|
- " model.train()\n",
|
|
|
- " outputs = model(**batch)\n",
|
|
|
+ " with torch.autocast(device_type=DEVICE, dtype=torch.float16):\n",
|
|
|
+ " outputs = model(**batch)\n",
|
|
|
" loss = outputs.loss\n",
|
|
|
- " loss.backward()\n",
|
|
|
+ " scaler.scale(loss).backward()\n",
|
|
|
"\n",
|
|
|
- " optimizer.step()\n",
|
|
|
+ " scaler.step(optimizer)\n",
|
|
|
+ " scaler.update()\n",
|
|
|
" lr_scheduler.step()\n",
|
|
|
" optimizer.zero_grad()\n",
|
|
|
"\n",
|
|
|
- " wandb.log({\"Train Loss\": loss})\n",
|
|
|
+ " wandb.log({\"Train Loss\": loss.detach()})\n",
|
|
|
"\n",
|
|
|
" accuracy = eval_metrics(model, valid_dataloader, device=DEVICE)\n",
|
|
|
" wandb.log({\"Valid Accuracy\": accuracy}, commit=False)"
|
|
@@ -282,184 +326,26 @@
|
|
|
{
|
|
|
"cell_type": "markdown",
|
|
|
"id": "51770911",
|
|
|
- "metadata": {},
|
|
|
- "source": [
|
|
|
- "Our model have been trained!"
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "markdown",
|
|
|
- "id": "1bbf014f",
|
|
|
- "metadata": {},
|
|
|
- "source": [
|
|
|
- "## Beyond soft-prompt tuning\n",
|
|
|
- "\n",
|
|
|
- "Let's try to tune model using adapters in the middle of the model."
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
- "id": "3bea4391",
|
|
|
- "metadata": {},
|
|
|
- "outputs": [],
|
|
|
- "source": [
|
|
|
- "class BloomBasedClassifier(nn.Module):\n",
|
|
|
- " def __init__(\n",
|
|
|
- " self,\n",
|
|
|
- " model,\n",
|
|
|
- " intermediate_size: int = 32,\n",
|
|
|
- " num_classes: int = 2,\n",
|
|
|
- " adapter_layer_position: int = 6,\n",
|
|
|
- " head_layer_position: int = 10\n",
|
|
|
- " ):\n",
|
|
|
- " super().__init__()\n",
|
|
|
- " self.distributed_layers = model.transformer.h\n",
|
|
|
- "\n",
|
|
|
- " self.hidden_size = model.config.hidden_size\n",
|
|
|
- " self.dtype = model.config.torch_dtype\n",
|
|
|
- " self.intermediate_size = intermediate_size\n",
|
|
|
- " self.num_classes = num_classes\n",
|
|
|
- " self.adapter_layer_position = adapter_layer_position\n",
|
|
|
- " self.head_layer_position = head_layer_position\n",
|
|
|
- " \n",
|
|
|
- " self.word_embeddings = model.transformer.word_embeddings\n",
|
|
|
- " self.adapter = nn.Sequential(\n",
|
|
|
- " nn.Linear(self.hidden_size, self.intermediate_size),\n",
|
|
|
- " nn.Linear(self.intermediate_size, self.hidden_size),\n",
|
|
|
- " ).to(self.dtype)\n",
|
|
|
- " self.head = nn.Sequential(\n",
|
|
|
- " nn.LayerNorm(self.hidden_size),\n",
|
|
|
- " nn.Linear(self.hidden_size, self.num_classes),\n",
|
|
|
- " ).to(self.dtype)\n",
|
|
|
- " \n",
|
|
|
- " def forward(self, embeddings):\n",
|
|
|
- " before_layers = self.distributed_layers[0:self.adapter_layer_position]\n",
|
|
|
- " after_layers = self.distributed_layers[self.adapter_layer_position:self.head_layer_position]\n",
|
|
|
- " \n",
|
|
|
- " hidden_states = before_layers(embeddings)\n",
|
|
|
- " hidden_states = self.adapter(hidden_states)\n",
|
|
|
- " hidden_states = after_layers(hidden_states)\n",
|
|
|
- " pooled_states = torch.mean(hidden_states, dim=1)\n",
|
|
|
- " return self.head(pooled_states)"
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "markdown",
|
|
|
- "id": "15299620",
|
|
|
- "metadata": {},
|
|
|
- "source": [
|
|
|
- "Clear model and device memory."
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
- "id": "aa27b168",
|
|
|
- "metadata": {},
|
|
|
- "outputs": [],
|
|
|
- "source": [
|
|
|
- "del model, optimizer, lr_scheduler\n",
|
|
|
- "torch.cuda.empty_cache()"
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "markdown",
|
|
|
- "id": "5406390f",
|
|
|
- "metadata": {},
|
|
|
- "source": [
|
|
|
- "Create new model with adapters."
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
- "id": "a251db80",
|
|
|
- "metadata": {},
|
|
|
- "outputs": [],
|
|
|
- "source": [
|
|
|
- "INTERMEDIATE_SIZE = 32\n",
|
|
|
- "ADAPTER_LAYER_POSITION = 6\n",
|
|
|
- "HEAD_LAYER_POSITION = 10"
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
- "id": "3578df3a",
|
|
|
- "metadata": {},
|
|
|
- "outputs": [],
|
|
|
- "source": [
|
|
|
- "cls_model = BloomBasedClassifier(\n",
|
|
|
- " DistributedBloomForSequenceClassification.from_pretrained(MODEL_NAME),\n",
|
|
|
- " intermediate_size=INTERMEDIATE_SIZE,\n",
|
|
|
- " adapter_layer_position=ADAPTER_LAYER_POSITION,\n",
|
|
|
- " head_layer_position=HEAD_LAYER_POSITION,\n",
|
|
|
- ").to(DEVICE)\n",
|
|
|
- "cls_optimizer = AdamW(cls_model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY)\n",
|
|
|
- "cls_criterion = nn.CrossEntropyLoss()\n",
|
|
|
- "\n",
|
|
|
- "lr_scheduler = get_scheduler(\n",
|
|
|
- " name=\"linear\", optimizer=cls_optimizer, num_warmup_steps=0, num_training_steps=len(train_dataloader)\n",
|
|
|
- ")"
|
|
|
- ]
|
|
|
- },
|
|
|
- {
|
|
|
- "cell_type": "markdown",
|
|
|
- "id": "a40468b9",
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "id": "51770911"
|
|
|
+ },
|
|
|
"source": [
|
|
|
- "And start training our new adapted model."
|
|
|
+ "Our model has been trained! You can now upload it to the Hub for later use, try out different models [served in the public swarm](http://health.petals.ml/), or [join Petals with your own GPU](https://github.com/bigscience-workshop/petals#connect-your-gpu-and-increase-petals-capacity)!"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": null,
|
|
|
- "id": "ed051a5d",
|
|
|
- "metadata": {},
|
|
|
"outputs": [],
|
|
|
- "source": [
|
|
|
- "wandb.init(\n",
|
|
|
- " project=\"bloom_based_cls-sst-2\",\n",
|
|
|
- " config={\n",
|
|
|
- " \"num_epochs\": NUM_EPOCHS,\n",
|
|
|
- " \"batch_size\": BATCH_SIZE,\n",
|
|
|
- " \"learning_rate\": LR,\n",
|
|
|
- " \"weight_decay\": WEIGHT_DECAY,\n",
|
|
|
- " \"model_name\": MODEL_NAME,\n",
|
|
|
- " \"seed\": SEED,\n",
|
|
|
- " \"intermediate_size\": INTERMEDIATE_SIZE,\n",
|
|
|
- " \"adapter_layer_position\": ADAPTER_LAYER_POSITION,\n",
|
|
|
- " \"head_layer_position\": HEAD_LAYER_POSITION,\n",
|
|
|
- " }\n",
|
|
|
- ")\n",
|
|
|
- "\n",
|
|
|
- "for epoch in range(NUM_EPOCHS):\n",
|
|
|
- " for batch in tqdm(train_dataloader):\n",
|
|
|
- " batch = {k: v.to(DEVICE) for k, v in batch.items()}\n",
|
|
|
- "\n",
|
|
|
- " cls_model.train()\n",
|
|
|
- " with torch.no_grad():\n",
|
|
|
- " embeddings_output = cls_model.word_embeddings(batch[\"input_ids\"])\n",
|
|
|
- " outputs = cls_model(embeddings_output)\n",
|
|
|
- " loss = cls_criterion(outputs, batch[\"labels\"])\n",
|
|
|
- " loss.backward()\n",
|
|
|
- "\n",
|
|
|
- " cls_optimizer.step()\n",
|
|
|
- " lr_scheduler.step()\n",
|
|
|
- " cls_optimizer.zero_grad()\n",
|
|
|
- "\n",
|
|
|
- " wandb.log({\"Train Loss\": loss})\n",
|
|
|
- "\n",
|
|
|
- " accuracy = eval_metrics(cls_model, valid_dataloader, device=DEVICE)\n",
|
|
|
- " wandb.log({\"Valid Accuracy\": accuracy}, commit=False)"
|
|
|
- ]
|
|
|
+ "source": [],
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": false
|
|
|
+ }
|
|
|
}
|
|
|
],
|
|
|
"metadata": {
|
|
|
"kernelspec": {
|
|
|
"display_name": "Python 3",
|
|
|
- "language": "python",
|
|
|
"name": "python3"
|
|
|
},
|
|
|
"language_info": {
|
|
@@ -478,7 +364,12 @@
|
|
|
"interpreter": {
|
|
|
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
|
|
|
}
|
|
|
- }
|
|
|
+ },
|
|
|
+ "colab": {
|
|
|
+ "provenance": [],
|
|
|
+ "gpuType": "T4"
|
|
|
+ },
|
|
|
+ "accelerator": "GPU"
|
|
|
},
|
|
|
"nbformat": 4,
|
|
|
"nbformat_minor": 5
|