Browse Source

remove transformer block, implement as sequential of size 1 (#54)

* remove transformer block, implement as sequence size 1
* reimplement get_remote_module
* fix readme

Co-authored-by: Alexander Borzunov <hxrussia@gmail.com>
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
Pavel Samygin 3 years ago
parent
commit
0be21775af

+ 14 - 14
README.md

@@ -37,18 +37,18 @@ Then open a python notebook or console and run:
 ```python
 ```python
 import torch
 import torch
 import hivemind
 import hivemind
-from src import get_remote_module
+from src import DistributedBloomConfig, get_remote_module
 
 
 
 
 dht = hivemind.DHT(
 dht = hivemind.DHT(
     initial_peers=[TODO_COPY_FULL_ADDRESS_FROM_ANY_OF_THE_SERVERS],  # e.g. /ip4/127.0.0.1/...
     initial_peers=[TODO_COPY_FULL_ADDRESS_FROM_ANY_OF_THE_SERVERS],  # e.g. /ip4/127.0.0.1/...
     client_mode=True, start=True,
     client_mode=True, start=True,
 )
 )
-
-layer3, layer4 = get_remote_module(dht, ['bigscience/test-bloomd-6b3.3', 'bigscience/test-bloomd-6b3.4'])
+config = DistributedBloomConfig.from_pretrained("bigscience/test-bloom-6b3")
+layer3, layer4 = get_remote_module(dht, ['bigscience/test-bloomd-6b3.3', 'bigscience/test-bloomd-6b3.4'], config)
 assert layer3 is not None and layer4 is not None, "one or both layers were not found in DHT"
 assert layer3 is not None and layer4 is not None, "one or both layers were not found in DHT"
 # test forward/backward, two blocks
 # test forward/backward, two blocks
-outputs, = layer4(*layer3(torch.randn(1, 64, 4096)))
+outputs = layer4(layer3(torch.randn(1, 64, 4096)))
 loss = (outputs * torch.randn_like(outputs)).norm()
 loss = (outputs * torch.randn_like(outputs)).norm()
 loss.backward()
 loss.backward()
 
 
@@ -74,18 +74,18 @@ python -m cli.convert_model --model bigscience/bloom-6b3  \
 
 
 To test distributed inference, run one or more servers, then open a new shell and run pytest with environment variables:
 To test distributed inference, run one or more servers, then open a new shell and run pytest with environment variables:
 ```bash
 ```bash
-# shell A: serve blocks 3 and 4
+# shell A: serve model
 python -m cli.run_server --converted_model_name_or_path bigscience/test-bloomd-6b3 \
 python -m cli.run_server --converted_model_name_or_path bigscience/test-bloomd-6b3 \
-  --block_indices 3:5 --torch_dtype float32 --identity_path ./server1.id --host_maddrs /ip4/127.0.0.1/tcp/31337
+  --torch_dtype float32 --identity_path ./server1.id --host_maddrs /ip4/127.0.0.1/tcp/31337
 
 
-# shell B: connect to the swarm and test individual blocks for exact match
-export PYTHONPATH=. INITIAL_PEERS="/ip4/TODO_COPY_INITIAL_PEERS_FROM_SERVER_OUTPUT"
-BLOCK_UID=bigscience/test-bloomd-6b3.3 pytest tests/test_block_exact_match.py
-BLOCK_UID=bigscience/test-bloomd-6b3.4 pytest tests/test_block_exact_match.py
+# shell B:
+export PYTHONPATH=.
+export INITIAL_PEERS="/ip4/TODO_COPY_INITIAL_PEERS_FROM_SERVER_OUTPUT"
+export MODEL_NAME="bigscience/test-bloomd-6b3"
 
 
-# the test below will fail because there is no server that serves layer 7
-# BLOCK_UID=bigscience/test-bloomd-6b3.7 pytest tests/test_block_exact_match.py
+# test individual random blocks for exact match
+pytest tests/test_block_exact_match.py
 
 
-# test the full model (requires that servers collectively serve all model layers)
-REF_NAME=bigscience/bloom-6b3 pytest tests/test_full_model.py
+# test the full model
+pytest tests/test_full_model.py
 ```
 ```

+ 1 - 2
src/client/__init__.py

@@ -1,5 +1,4 @@
 from src.client.inference_session import RemoteSequentialInferenceSession, RemoteTransformerBlockInferenceSession
 from src.client.inference_session import RemoteSequentialInferenceSession, RemoteTransformerBlockInferenceSession
-from src.client.remote_block import RemoteTransformerBlock
 from src.client.remote_model import DistributedBloomConfig, DistributedBloomForCausalLM, DistributedBloomModel
 from src.client.remote_model import DistributedBloomConfig, DistributedBloomForCausalLM, DistributedBloomModel
-from src.client.remote_sequential import RemoteSequential
+from src.client.remote_sequential import RemoteSequential, RemoteTransformerBlock
 from src.client.sequence_manager import RemoteSequenceManager
 from src.client.sequence_manager import RemoteSequenceManager

+ 0 - 40
src/client/remote_block.py

@@ -1,40 +0,0 @@
-# Note: this code is being actively modified by justheuristic. If you want to change anything about it, please warn me.
-from __future__ import annotations
-
-import random
-
-import torch
-from hivemind.moe.client.expert import RemoteExpert, RemoteExpertWorker
-from hivemind.moe.expert_uid import ExpertInfo
-from hivemind.p2p import P2P, StubBase
-from hivemind.utils import get_logger, use_hivemind_log_handler
-
-from src.client.inference_session import RemoteTransformerBlockInferenceSession
-from src.data_structures import RemoteModuleInfo
-from src.server.handler import TransformerConnectionHandler
-
-use_hivemind_log_handler("in_root_logger")
-logger = get_logger(__file__)
-
-
-class RemoteTransformerBlock(RemoteExpert):
-    """A class that interacts with a remote module on a specific server for forward/backward or inference"""
-
-    def __init__(self, peers_info: RemoteModuleInfo, p2p: P2P):
-        peer_info = ExpertInfo(peers_info.uid, random.choice(list(peers_info.servers.keys())))  # TODO replace this
-        super().__init__(peer_info, p2p)
-
-    @property
-    def stub(self) -> StubBase:
-        return TransformerConnectionHandler.get_stub(self.p2p, self.peer_id)
-
-    def forward(self, inputs: torch.Tensor, **kwargs):
-        for k, v in kwargs.items():
-            assert v is None or v is False, f"Extra keyword arguments are not yet supported (got {k} = {v})"
-        return super().forward(inputs)
-
-    def inference_session(self, **kwargs) -> RemoteTransformerBlockInferenceSession:
-        """Initialize a new inference session with the specified remote server"""
-        return RemoteExpertWorker.run_coroutine(
-            RemoteTransformerBlockInferenceSession._create(self.stub, self.uid, self.info, **kwargs)
-        )

+ 23 - 7
src/client/remote_sequential.py

@@ -1,6 +1,5 @@
 from __future__ import annotations
 from __future__ import annotations
 
 
-import logging
 from typing import Optional, Union
 from typing import Optional, Union
 
 
 import torch
 import torch
@@ -10,11 +9,9 @@ from torch import nn
 
 
 import src
 import src
 from src.client.inference_session import RemoteSequentialInferenceSession
 from src.client.inference_session import RemoteSequentialInferenceSession
-from src.client.remote_block import RemoteTransformerBlock
 from src.client.sequence_manager import RemoteSequenceManager
 from src.client.sequence_manager import RemoteSequenceManager
 from src.client.sequential_autograd import _RemoteSequentialAutogradFunction
 from src.client.sequential_autograd import _RemoteSequentialAutogradFunction
 from src.data_structures import UID_DELIMITER
 from src.data_structures import UID_DELIMITER
-from src.dht_utils import _create_remote_modules_from_infos
 from src.utils.misc import DUMMY
 from src.utils.misc import DUMMY
 
 
 use_hivemind_log_handler("in_root_logger")
 use_hivemind_log_handler("in_root_logger")
@@ -57,12 +54,16 @@ class RemoteSequential(nn.Module):
         outputs = _RemoteSequentialAutogradFunction.apply(inputs, prompts, self.sequence_manager)
         outputs = _RemoteSequentialAutogradFunction.apply(inputs, prompts, self.sequence_manager)
         return outputs
         return outputs
 
 
-    def __getitem__(self, ix: Union[int, slice]) -> Union[RemoteTransformerBlock, RemoteSequential]:
+    def __getitem__(self, ix: Union[int, slice]) -> RemoteSequential:
         assert isinstance(ix, (int, slice))
         assert isinstance(ix, (int, slice))
         if isinstance(ix, int):
         if isinstance(ix, int):
-            assert 0 <= ix < len(self)
-            (module,) = _create_remote_modules_from_infos([self.sequence_manager.block_infos[ix]], self.p2p)
-            return module
+            return RemoteTransformerBlock(
+                self.config,
+                self.dht,
+                dht_prefix=self.dht_prefix,
+                p2p=self.p2p,
+                sequence_manager=self.sequence_manager[ix],
+            )
         else:
         else:
             return RemoteSequential(
             return RemoteSequential(
                 self.config,
                 self.config,
@@ -85,3 +86,18 @@ class RemoteSequential(nn.Module):
 
 
     def extra_repr(self) -> str:
     def extra_repr(self) -> str:
         return f"modules={self.sequence_manager.block_uids[0]}..{self.sequence_manager.block_uids[-1]}"
         return f"modules={self.sequence_manager.block_uids[0]}..{self.sequence_manager.block_uids[-1]}"
+
+
+class RemoteTransformerBlock(RemoteSequential):
+    """Single transformer block hosted by swarm
+
+    This class is deprecated and kept for backward compatibility.
+    It will be removed soon in favor of using ``RemoteSequential`` directly.
+    """
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        assert len(self) == 1, "Remote Block is a sequence size 1"
+
+    def extra_repr(self):
+        return f"{self.sequence_manager.block_uids[0]}"

+ 12 - 9
src/client/sequence_manager.py

@@ -82,6 +82,7 @@ class RemoteSequenceManager:
         for block_index, (uid, info) in enumerate(zip(self.block_uids, new_block_infos)):
         for block_index, (uid, info) in enumerate(zip(self.block_uids, new_block_infos)):
             if info is None:
             if info is None:
                 logger.warning(f"Found no block info for block {uid}")
                 logger.warning(f"Found no block info for block {uid}")
+                continue
             if not isinstance(info, RemoteModuleInfo):
             if not isinstance(info, RemoteModuleInfo):
                 logger.warning(f"Unexpected dht entry type for {uid}: {info}")
                 logger.warning(f"Unexpected dht entry type for {uid}: {info}")
             if not info.servers:
             if not info.servers:
@@ -95,22 +96,24 @@ class RemoteSequenceManager:
         closed_spans = []
         closed_spans = []
         active_spans = {}
         active_spans = {}
         for block_index, info in enumerate(block_infos):
         for block_index, info in enumerate(block_infos):
-            for peer_id, server in info.servers.items():
-                if server.state != ServerState.ONLINE:
-                    continue
-                if peer_id not in active_spans:
-                    active_spans[peer_id] = RemoteSpanInfo(start=block_index, end=block_index + 1, peer_id=peer_id)
-                else:  # peer_id in active_spans
-                    active_spans[peer_id].end = block_index + 1
+            if info is not None:
+                for peer_id, server in info.servers.items():
+                    if server.state != ServerState.ONLINE:
+                        continue
+                    if peer_id not in active_spans:
+                        active_spans[peer_id] = RemoteSpanInfo(start=block_index, end=block_index + 1, peer_id=peer_id)
+                    else:  # peer_id in active_spans
+                        active_spans[peer_id].end = block_index + 1
 
 
             for peer_id in list(active_spans.keys()):
             for peer_id in list(active_spans.keys()):
                 if (
                 if (
-                    peer_id not in info.servers
+                    info is None
+                    or peer_id not in info.servers
                     or info.servers[peer_id].state != ServerState.ONLINE
                     or info.servers[peer_id].state != ServerState.ONLINE
                     or block_index == len(block_infos) - 1
                     or block_index == len(block_infos) - 1
                 ):
                 ):
                     closed_spans.append(active_spans.pop(peer_id))
                     closed_spans.append(active_spans.pop(peer_id))
-        assert not active_spans
+        assert not active_spans, f"spans: {active_spans}"
 
 
         closed_spans.sort(key=lambda span: span.end - span.start, reverse=True)
         closed_spans.sort(key=lambda span: span.end - span.start, reverse=True)
 
 

+ 1 - 1
src/client/sequential_autograd.py

@@ -110,7 +110,7 @@ async def sequential_forward(
     If some subsequence fails, reconstructs the remaining path and tries to finish the forward.
     If some subsequence fails, reconstructs the remaining path and tries to finish the forward.
     """
     """
 
 
-    assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3
+    assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3, f"{type(inputs)}: {inputs.ndim}"
 
 
     end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
     end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
     assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)
     assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)

+ 47 - 30
src/dht_utils.py

@@ -9,7 +9,7 @@ from typing import Dict, List, Optional, Sequence, Union
 
 
 from hivemind.dht import DHT, DHTNode, DHTValue
 from hivemind.dht import DHT, DHTNode, DHTValue
 from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
 from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
-from hivemind.p2p import P2P, PeerID
+from hivemind.p2p import PeerID
 from hivemind.utils import DHTExpiration, MPFuture, get_dht_time, get_logger, use_hivemind_log_handler
 from hivemind.utils import DHTExpiration, MPFuture, get_dht_time, get_logger, use_hivemind_log_handler
 
 
 import src
 import src
@@ -72,34 +72,63 @@ async def _declare_active_modules(
     )
     )
 
 
 
 
+def get_remote_sequence(
+    dht: DHT,
+    start: int,
+    stop: int,
+    config: src.DistributedBloomConfig,
+    dht_prefix: Optional[str] = None,
+    return_future: bool = False,
+) -> Union[src.RemoteSequential, MPFuture]:
+    return RemoteExpertWorker.run_coroutine(
+        _get_remote_sequence(dht, start, stop, config, dht_prefix), return_future=return_future
+    )
+
+
+async def _get_remote_sequence(
+    dht: DHT,
+    start: int,
+    stop: int,
+    config: src.DistributedBloomConfig,
+    dht_prefix: Optional[str] = None,
+) -> src.RemoteSequential:
+    uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(start, stop)]
+    p2p = await dht.replicate_p2p()
+    manager = src.RemoteSequenceManager(dht, uids, p2p)
+    return src.RemoteSequential(config, dht, dht_prefix, p2p, manager)
+
+
 def get_remote_module(
 def get_remote_module(
     dht: DHT,
     dht: DHT,
     uid_or_uids: Union[ModuleUID, List[ModuleUID]],
     uid_or_uids: Union[ModuleUID, List[ModuleUID]],
-    expiration_time: Optional[DHTExpiration] = None,
+    config: src.DistributedBloomConfig,
+    dht_prefix: Optional[str] = None,
     return_future: bool = False,
     return_future: bool = False,
-) -> Union[List[Optional[src.RemoteTransformerBlock]], MPFuture[List[Optional[src.RemoteTransformerBlock]]]]:
+) -> Union[Union[src.RemoteTransformerBlock, List[src.RemoteTransformerBlock]], MPFuture]:
     """
     """
     :param uid_or_uids: find one or more modules with these ids from across the DHT
     :param uid_or_uids: find one or more modules with these ids from across the DHT
-    :param expiration_time: if specified, return modules that expire no sooner than this (based on get_dht_time)
+    :param config: model config, usualy taken by .from_pretrained(MODEL_NAME)
     :param return_future: if False (default), return when finished. Otherwise return MPFuture and run in background.
     :param return_future: if False (default), return when finished. Otherwise return MPFuture and run in background.
-    :returns: a list of [RemoteTransformerBlock if found else None]
+    :returns: a list of [RemoteTransformerBlock]
     """
     """
-    single_uid = isinstance(uid_or_uids, ModuleUID)
-    uids = [uid_or_uids] if single_uid else uid_or_uids
-    infos = dht.run_coroutine(
-        partial(_get_remote_module_infos, uids=uids, expiration_time=expiration_time), return_future
+    return RemoteExpertWorker.run_coroutine(
+        _get_remote_module(dht, uid_or_uids, config, dht_prefix), return_future=return_future
     )
     )
 
 
-    if return_future:
-
-        async def _unpack(infos_future: MPFuture, dht: DHT):
-            p2p = await dht.replicate_p2p()
-            modules = _create_remote_modules_from_infos(await infos_future, p2p)
-            return modules[0] if single_uid else modules
 
 
-        return RemoteExpertWorker.run_coroutine(_unpack(infos, dht), return_future)
-    p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p())
-    modules = _create_remote_modules_from_infos(infos, p2p)
+async def _get_remote_module(
+    dht: DHT,
+    uid_or_uids: Union[ModuleUID, List[ModuleUID]],
+    config: src.DistributedBloomConfig,
+    dht_prefix: Optional[str] = None,
+) -> Union[src.RemoteTransformerBlock, List[src.RemoteTransformerBlock]]:
+    single_uid = isinstance(uid_or_uids, ModuleUID)
+    uids = [uid_or_uids] if single_uid else uid_or_uids
+    p2p = await dht.replicate_p2p()
+    managers = (src.RemoteSequenceManager(dht, [uid], p2p) for uid in uids)
+    modules = [
+        src.RemoteTransformerBlock(config, dht, dht_prefix=dht_prefix, p2p=p2p, sequence_manager=m) for m in managers
+    ]
     return modules[0] if single_uid else modules
     return modules[0] if single_uid else modules
 
 
 
 
@@ -149,15 +178,3 @@ async def _get_remote_module_infos(
         if servers:
         if servers:
             modules[i] = RemoteModuleInfo(uid, servers)
             modules[i] = RemoteModuleInfo(uid, servers)
     return modules
     return modules
-
-
-def _create_remote_modules_from_infos(
-    infos: Sequence[Optional[RemoteModuleInfo]], p2p: P2P
-) -> List[Optional[src.RemoteTransformerBlock]]:
-    modules: List[Optional[src.RemoteTransformerBlock]] = []
-    for info in infos:
-        if info is not None:
-            modules.append(src.RemoteTransformerBlock(info, p2p))
-        else:
-            modules.append(None)
-    return modules

+ 6 - 6
tests/test_block_exact_match.py

@@ -7,8 +7,10 @@ import transformers
 from hivemind import P2PHandlerError
 from hivemind import P2PHandlerError
 from test_utils import *
 from test_utils import *
 
 
+import src
+from src import DistributedBloomConfig
 from src.bloom.from_pretrained import load_pretrained_block
 from src.bloom.from_pretrained import load_pretrained_block
-from src.client.remote_block import RemoteTransformerBlock
+from src.client.remote_sequential import RemoteTransformerBlock
 from src.data_structures import UID_DELIMITER
 from src.data_structures import UID_DELIMITER
 from src.dht_utils import get_remote_module
 from src.dht_utils import get_remote_module
 
 
@@ -16,16 +18,14 @@ from src.dht_utils import get_remote_module
 @pytest.mark.forked
 @pytest.mark.forked
 def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
 def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
     dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
     dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
-    config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
+    config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
 
 
     for block_index in random.sample(range(config.n_layer), 3):
     for block_index in random.sample(range(config.n_layer), 3):
-        block_uid = f"{MODEL_NAME}{UID_DELIMITER}{block_index}"
-        remote_block = get_remote_module(dht, block_uid)
-        assert remote_block is not None, f"Could not find {block_uid} in DHT"
+        remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}{block_index}", config)
         assert isinstance(remote_block, RemoteTransformerBlock)
         assert isinstance(remote_block, RemoteTransformerBlock)
 
 
         inputs = torch.randn(1, 8, config.hidden_size)
         inputs = torch.randn(1, 8, config.hidden_size)
-        (outputs_forward,) = remote_block(inputs)
+        outputs_forward = remote_block(inputs)
 
 
         outputs_inference = []
         outputs_inference = []
         with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
         with remote_block.inference_session(max_length=inputs.shape[1]) as sess:

+ 11 - 20
tests/test_chained_calls.py

@@ -7,25 +7,20 @@
 import hivemind
 import hivemind
 import pytest
 import pytest
 import torch
 import torch
-import transformers
-from hivemind.moe.expert_uid import UID_DELIMITER, ExpertInfo
 from test_utils import *
 from test_utils import *
 
 
+import src
 from src.bloom.from_pretrained import load_pretrained_block
 from src.bloom.from_pretrained import load_pretrained_block
-from src.client.remote_block import RemoteTransformerBlock
-from src.dht_utils import get_remote_module
+from src.client.remote_sequential import RemoteSequential
+from src.dht_utils import get_remote_sequence
 
 
 
 
 @pytest.mark.forked
 @pytest.mark.forked
 def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1):
 def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1):
     dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
     dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
-    config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
-    remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}0")
-    assert remote_block is not None, f"Could not find {MODEL_NAME}{UID_DELIMITER}0 in DHT"
-    assert isinstance(remote_block, RemoteTransformerBlock)
-
-    _ = remote_block.info  # lazy-init info now, because otherwise we will _break_ info init by chaning _info
-    remote_block._info = ExpertInfo(f"{MODEL_NAME}.3 {MODEL_NAME}.4 {MODEL_NAME}.5", remote_block._info.peer_id)
+    config = src.DistributedBloomConfig.from_pretrained(MODEL_NAME)
+    remote_blocks = get_remote_sequence(dht, 3, 6, config)
+    assert isinstance(remote_blocks, RemoteSequential)
 
 
     ref_blocks = [
     ref_blocks = [
         load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
         load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
@@ -33,7 +28,7 @@ def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq
         load_pretrained_block(MODEL_NAME, 5, torch_dtype=torch.float32),
         load_pretrained_block(MODEL_NAME, 5, torch_dtype=torch.float32),
     ]
     ]
     inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True)
     inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True)
-    outputs_rpc = remote_block.forward(inputs)[0]
+    outputs_rpc = remote_blocks.forward(inputs)
     outputs_rpc.sum().backward()
     outputs_rpc.sum().backward()
     grads_rpc = inputs.grad
     grads_rpc = inputs.grad
 
 
@@ -52,18 +47,14 @@ def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq
 @pytest.mark.forked
 @pytest.mark.forked
 def test_chained_inference_exact_match(atol_inference=1e-4):
 def test_chained_inference_exact_match(atol_inference=1e-4):
     dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
     dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
-    config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
-    remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}0")
-    assert remote_block is not None, f"Could not find {MODEL_NAME}{UID_DELIMITER}0 in DHT"
-    assert isinstance(remote_block, RemoteTransformerBlock)
-
-    _ = remote_block.info  # lazy-init info now, because otherwise we will _break_ info init by chaning _info
-    remote_block._info = ExpertInfo(f"{MODEL_NAME}.3 {MODEL_NAME}.4", remote_block._info.peer_id)
+    config = src.DistributedBloomConfig.from_pretrained(MODEL_NAME)
+    remote_blocks = get_remote_sequence(dht, 3, 5, config)
+    assert isinstance(remote_blocks, RemoteSequential)
 
 
     inputs = torch.randn(1, 8, config.hidden_size)
     inputs = torch.randn(1, 8, config.hidden_size)
 
 
     outputs_inference = []
     outputs_inference = []
-    with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
+    with remote_blocks.inference_session(max_length=inputs.shape[1]) as sess:
         for i in range(inputs.shape[1]):
         for i in range(inputs.shape[1]):
             outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
             outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
     outputs_inference = torch.cat(outputs_inference, dim=1)
     outputs_inference = torch.cat(outputs_inference, dim=1)