run_training_monitor.py 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. #!/usr/bin/env python
  2. import logging
  3. import time
  4. from dataclasses import asdict, dataclass, field
  5. from ipaddress import ip_address
  6. from typing import Optional
  7. import requests
  8. import torch
  9. import wandb
  10. from torch_optimizer import Lamb
  11. from transformers import AlbertForPreTraining, AlbertConfig, HfArgumentParser
  12. import hivemind
  13. from hivemind.utils.compression import CompressionType
  14. import utils
  15. from arguments import BaseTrainingArguments, CollaborativeOptimizerArguments, AveragerArguments
  16. logger = logging.getLogger(__name__)
  17. @dataclass
  18. class TrainingMonitorArguments(BaseTrainingArguments):
  19. """
  20. Note: You might want to have several initial peers so that if one dies,
  21. new workers still can join the collaboration via alive initial peers' addresses.
  22. Specify initial_peers argument for that purpose
  23. """
  24. use_google_dns: bool = field(
  25. default=False,
  26. metadata={
  27. "help": "Use Google DNS to determine the public IP address of this machine (and add it to --announce_maddrs)"
  28. },
  29. )
  30. refresh_period: float = field(default=30, metadata={"help": "Period (in seconds) for fetching the keys from DHT"})
  31. wandb_project: Optional[str] = field(
  32. default=None, metadata={"help": "Name of Weights & Biases project to report the training progress to"}
  33. )
  34. save_checkpoint_step_interval: int = field(
  35. default=5, metadata={"help": "Frequency (in steps) of fetching and saving state from peers"}
  36. )
  37. model_config_path: str = field(
  38. default="https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
  39. metadata={"help": "Path to the model config"},
  40. )
  41. repo_path: Optional[str] = field(
  42. default=None, metadata={"help": "Path to local repository to store the model and optimizer states"}
  43. )
  44. repo_url: Optional[str] = field(
  45. default=None, metadata={"help": "URL of Hugging Face Hub repository to upload the model and optimizer states"}
  46. )
  47. upload_interval: Optional[float] = field(
  48. default=None, metadata={"help": "Frequency (in seconds) of uploading the model to Hub"}
  49. )
  50. store_checkpoins: bool = field(default=False, metadata={"help": "If True, enables CheckpointHandler"})
  51. class CheckpointHandler:
  52. def __init__(
  53. self,
  54. monitor_args: TrainingMonitorArguments,
  55. collab_optimizer_args: CollaborativeOptimizerArguments,
  56. averager_args: AveragerArguments,
  57. dht: hivemind.DHT,
  58. ):
  59. self.save_checkpoint_step_interval = monitor_args.save_checkpoint_step_interval
  60. self.repo_path = monitor_args.repo_path
  61. self.repo_url = monitor_args.repo_url
  62. self.upload_interval = monitor_args.upload_interval
  63. self.previous_step = -1
  64. config = AlbertConfig.from_pretrained(monitor_args.model_config_path)
  65. self.model = AlbertForPreTraining(config)
  66. no_decay = ["bias", "LayerNorm.weight"]
  67. optimizer_grouped_parameters = [
  68. {
  69. "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
  70. "weight_decay": 0.01,
  71. },
  72. {
  73. "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
  74. "weight_decay": 0.0,
  75. },
  76. ]
  77. opt = Lamb(
  78. optimizer_grouped_parameters,
  79. lr=0.00176,
  80. weight_decay=0.01,
  81. clamp_value=10000.0,
  82. debias=True,
  83. )
  84. adjusted_target_batch_size = collab_optimizer_args.target_batch_size - collab_optimizer_args.batch_size_lead
  85. self.collaborative_optimizer = hivemind.CollaborativeOptimizer(
  86. opt=opt,
  87. dht=dht,
  88. prefix=experiment_prefix,
  89. compression_type=CompressionType.Value(collab_optimizer_args.compression),
  90. bandwidth=collab_optimizer_args.bandwidth,
  91. target_batch_size=adjusted_target_batch_size,
  92. client_mode=collab_optimizer_args.client_mode,
  93. verbose=True,
  94. start=True,
  95. **asdict(averager_args),
  96. )
  97. self.previous_timestamp = time.time()
  98. def is_time_to_save_state(self, cur_step):
  99. if self.save_checkpoint_step_interval is None:
  100. return False
  101. elif cur_step - self.previous_step >= self.save_checkpoint_step_interval:
  102. return True
  103. else:
  104. return False
  105. def save_state(self, cur_step):
  106. logger.info("Saving state from peers")
  107. self.collaborative_optimizer.load_state_from_peers()
  108. self.previous_step = cur_step
  109. def is_time_to_upload(self):
  110. if self.repo_path is None:
  111. return False
  112. elif time.time() - self.previous_timestamp >= self.upload_interval:
  113. return True
  114. else:
  115. return False
  116. def upload_checkpoint(self, current_loss):
  117. logger.info("Saving optimizer")
  118. torch.save(self.collaborative_optimizer.opt.state_dict(), f"{self.repo_path}/optimizer_state.pt")
  119. self.previous_timestamp = time.time()
  120. logger.info("Started uploading to Model Hub")
  121. self.model.push_to_hub(
  122. repo_name=self.repo_path,
  123. repo_url=self.repo_url,
  124. commit_message=f"Step {current_step}, loss {current_loss:.3f}",
  125. )
  126. logger.info("Finished uploading to Model Hub")
  127. if __name__ == "__main__":
  128. parser = HfArgumentParser((TrainingMonitorArguments, CollaborativeOptimizerArguments, AveragerArguments))
  129. monitor_args, collab_optimizer_args, averager_args = parser.parse_args_into_dataclasses()
  130. if monitor_args.use_google_dns:
  131. request = requests.get("https://api.ipify.org")
  132. request.raise_for_status()
  133. address = request.text
  134. logger.info(f"Received public IP address of this machine: {address}")
  135. version = ip_address(address).version
  136. monitor_args.announce_maddrs += [f"/ip{version}/{address}/tcp/0", f"/ip{version}/{address}/udp/0/quic"]
  137. experiment_prefix = monitor_args.experiment_prefix
  138. validators, local_public_key = utils.make_validators(experiment_prefix)
  139. dht = hivemind.DHT(
  140. start=True,
  141. initial_peers=monitor_args.initial_peers,
  142. record_validators=validators,
  143. use_ipfs=monitor_args.use_ipfs,
  144. host_maddrs=monitor_args.host_maddrs,
  145. announce_maddrs=monitor_args.announce_maddrs,
  146. )
  147. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=monitor_args.use_ipfs)
  148. if monitor_args.wandb_project is not None:
  149. wandb.init(project=monitor_args.wandb_project)
  150. current_step = 0
  151. if monitor_args.store_checkpoins:
  152. checkpoint_handler = CheckpointHandler(monitor_args, collab_optimizer_args, averager_args, dht)
  153. while True:
  154. metrics_dict = dht.get(experiment_prefix + "_metrics", latest=True)
  155. if metrics_dict is not None:
  156. metrics_dict = metrics_dict.value
  157. metrics = [utils.LocalMetrics.parse_obj(metrics_dict[peer].value) for peer in metrics_dict]
  158. latest_step = max(item.step for item in metrics)
  159. if latest_step != current_step:
  160. logger.debug(f"Got metrics from {len(metrics)} peers")
  161. for i, metrics_for_peer in enumerate(metrics):
  162. logger.debug(f"{i} peer {metrics_for_peer}")
  163. current_step = latest_step
  164. alive_peers = 0
  165. sum_loss = 0
  166. num_samples = 0
  167. sum_perf = 0
  168. sum_mini_steps = 0
  169. for item in metrics:
  170. sum_loss += item.loss
  171. alive_peers += 1
  172. sum_perf += item.samples_per_second
  173. num_samples += item.samples_accumulated
  174. sum_mini_steps += item.mini_steps
  175. current_loss = sum_loss / sum_mini_steps
  176. logger.info(f"Step #{current_step}\tloss = {current_loss:.5f}")
  177. if monitor_args.wandb_project is not None:
  178. wandb.log(
  179. {
  180. "loss": current_loss,
  181. "alive peers": alive_peers,
  182. "samples": num_samples,
  183. "performance": sum_perf,
  184. "step": latest_step,
  185. }
  186. )
  187. if monitor_args.store_checkpoins:
  188. if checkpoint_handler.is_time_to_save_state(current_step):
  189. checkpoint_handler.save_state(current_step)
  190. if checkpoint_handler.is_time_to_upload():
  191. checkpoint_handler.upload_checkpoint(current_loss)
  192. logger.debug("Peer is still alive...")
  193. time.sleep(monitor_args.refresh_period)