test_moe.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. import numpy as np
  2. import pytest
  3. import torch
  4. from hivemind.dht import DHT
  5. from hivemind.moe.client.expert import RemoteExpert, RemoteExpertInfo, create_remote_experts
  6. from hivemind.moe.client.moe import DUMMY, RemoteMixtureOfExperts, _RemoteCallMany
  7. from hivemind.moe.client.switch_moe import RemoteSwitchMixtureOfExperts
  8. from hivemind.moe.server import ExpertBackend, Server, background_server, declare_experts
  9. from hivemind.moe.server.layers import name_to_block
  10. from hivemind.p2p.p2p_daemon_bindings.control import P2PDaemonError
  11. from hivemind.utils.tensor_descr import BatchTensorDescriptor
  12. @pytest.mark.forked
  13. def test_moe():
  14. all_expert_uids = [
  15. f"ffn.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}" for _ in range(10)
  16. ]
  17. with background_server(
  18. expert_uids=all_expert_uids, device="cpu", expert_cls="ffn", num_handlers=1, hidden_dim=16
  19. ) as server_peer_info:
  20. dht = DHT(start=True, initial_peers=server_peer_info.addrs)
  21. dmoe = RemoteMixtureOfExperts(in_features=16, grid_size=(4, 4, 4), dht=dht, k_best=3, uid_prefix="ffn.")
  22. for i in range(3):
  23. out = dmoe(torch.randn(10, 16))
  24. out.sum().backward()
  25. @pytest.mark.forked
  26. def test_no_experts():
  27. all_expert_uids = [
  28. f"expert.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}" for _ in range(10)
  29. ]
  30. with background_server(
  31. expert_uids=all_expert_uids, device="cpu", expert_cls="nop_delay", num_handlers=1, hidden_dim=16
  32. ) as server_peer_info:
  33. dht = DHT(start=True, initial_peers=server_peer_info.addrs)
  34. dmoe = RemoteSwitchMixtureOfExperts(
  35. in_features=16,
  36. grid_size=(4, 4, 4),
  37. dht=dht,
  38. uid_prefix="expert.",
  39. forward_timeout=0.1,
  40. backward_timeout=0.1,
  41. allow_zero_outputs=True,
  42. )
  43. for i in range(3):
  44. out, balancing_loss = dmoe(torch.randn(10, 16))
  45. out.sum().backward()
  46. @pytest.mark.forked
  47. def test_call_many(hidden_dim=16):
  48. k_min = 1
  49. timeout_after_k_min = None
  50. backward_k_min = 1
  51. forward_timeout = None
  52. backward_timeout = None
  53. detect_anomalies = False
  54. allow_zero_outputs = False
  55. atol = 1e-5
  56. with background_server(
  57. num_experts=5,
  58. device="cpu",
  59. expert_cls="ffn",
  60. num_handlers=1,
  61. hidden_dim=hidden_dim,
  62. optim_cls=None,
  63. ) as server_peer_info:
  64. inputs = torch.randn(4, hidden_dim, requires_grad=True)
  65. inputs_clone = inputs.clone().detach().requires_grad_(True)
  66. dht = DHT(initial_peers=server_peer_info.addrs, start=True)
  67. e0, e1, e2, e3, e4 = create_remote_experts(
  68. [RemoteExpertInfo(uid=f"expert.{i}", peer_info=server_peer_info) for i in range(5)],
  69. dht,
  70. )
  71. e5 = RemoteExpert(RemoteExpertInfo(f"thisshouldnotexist", server_peer_info), None)
  72. mask, expert_outputs = _RemoteCallMany.apply(
  73. DUMMY,
  74. [[e0, e1, e2], [e2, e4], [e1, e5, e3], []],
  75. k_min,
  76. backward_k_min,
  77. timeout_after_k_min,
  78. forward_timeout,
  79. backward_timeout,
  80. detect_anomalies,
  81. allow_zero_outputs,
  82. e1.info,
  83. inputs,
  84. )
  85. assert mask.shape == (4, 3)
  86. assert expert_outputs.shape == (4, 3, hidden_dim)
  87. assert np.all(
  88. mask.data.numpy()
  89. == np.array([[True, True, True], [True, True, False], [True, False, True], [False, False, False]])
  90. ), f"Incorrect mask, {mask}"
  91. reference_outputs = torch.zeros_like(expert_outputs)
  92. reference_outputs[0, 0] = e0(inputs_clone[0:1])
  93. reference_outputs[0, 1] = e1(inputs_clone[0:1])
  94. reference_outputs[0, 2] = e2(inputs_clone[0:1])
  95. reference_outputs[1, 0] = e2(inputs_clone[1:2])
  96. reference_outputs[1, 1] = e4(inputs_clone[1:2])
  97. reference_outputs[2, 0] = e1(inputs_clone[2:3])
  98. reference_outputs[2, 2] = e3(inputs_clone[2:3])
  99. assert torch.allclose(expert_outputs, reference_outputs, atol=atol, rtol=0)
  100. proj = torch.randn(4, hidden_dim)
  101. loss = (expert_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
  102. loss.backward()
  103. our_grad = inputs.grad.data.cpu().clone()
  104. reference_loss = (reference_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
  105. reference_loss.backward()
  106. reference_grad = inputs_clone.grad.data.cpu().clone()
  107. assert torch.allclose(our_grad, reference_grad, atol=atol, rtol=0)
  108. @pytest.mark.forked
  109. def test_remote_module_call(hidden_dim=16):
  110. with background_server(
  111. num_experts=1,
  112. device="cpu",
  113. expert_cls="ffn",
  114. num_handlers=1,
  115. hidden_dim=hidden_dim,
  116. optim_cls=None,
  117. ) as server_peer_info:
  118. dht = DHT(initial_peers=server_peer_info.addrs, start=True)
  119. real_expert, fake_expert = create_remote_experts(
  120. [
  121. RemoteExpertInfo(uid="expert.0", peer_info=server_peer_info),
  122. RemoteExpertInfo(uid="oiasfjiasjf", peer_info=server_peer_info),
  123. ],
  124. dht=dht,
  125. )
  126. out1 = real_expert(torch.randn(1, hidden_dim))
  127. assert out1.shape == (1, hidden_dim)
  128. dummy_x = torch.randn(3, hidden_dim, requires_grad=True)
  129. out3 = real_expert(dummy_x)
  130. assert out3.shape == (3, hidden_dim)
  131. out3_again = real_expert(dummy_x[1:])
  132. assert torch.allclose(out3_again, out3[1:], atol=1e-5, rtol=0)
  133. out3_again.norm().backward()
  134. assert dummy_x.grad is not None and dummy_x.grad.norm() > 0
  135. with pytest.raises(P2PDaemonError):
  136. real_expert(torch.randn(3, 11))
  137. with pytest.raises(P2PDaemonError):
  138. fake_expert(dummy_x)
  139. @pytest.mark.forked
  140. def test_beam_search_correctness():
  141. all_expert_uids = [f"ffn.{5 + i}.{10 + j}.{15 + k}" for i in range(10) for j in range(10) for k in range(10)]
  142. dht = DHT(start=True)
  143. assert all(declare_experts(dht, all_expert_uids, dht.peer_id))
  144. dmoe = RemoteMixtureOfExperts(in_features=32, grid_size=(32, 32, 32), dht=dht, k_best=4, uid_prefix="ffn.")
  145. for _ in range(25):
  146. input = torch.randn(32)
  147. grid_scores = dmoe.proj(input).split_with_sizes(dmoe.beam_search.grid_size, dim=-1)
  148. chosen_experts = dmoe.beam_search.find_best_experts(
  149. [tensor.detach().numpy() for tensor in grid_scores], beam_size=dmoe.k_best
  150. )
  151. chosen_scores = dmoe.compute_expert_scores([dim_scores[None] for dim_scores in grid_scores], [chosen_experts])[
  152. 0
  153. ]
  154. our_best_scores = list(chosen_scores.cpu().detach().numpy())
  155. # reference: independently find :beam_size: best experts with exhaustive search
  156. all_scores = dmoe.compute_expert_scores(
  157. [dim_scores.unsqueeze(0) for dim_scores in grid_scores],
  158. [[RemoteExpert(RemoteExpertInfo(uid, None), None) for uid in all_expert_uids]],
  159. )[0]
  160. true_best_scores = sorted(all_scores.cpu().detach().numpy(), reverse=True)[: len(chosen_experts)]
  161. assert np.allclose(true_best_scores, our_best_scores)
  162. @pytest.mark.forked
  163. def test_determinism(hidden_dim=16):
  164. atol = 1e-5
  165. xx = torch.randn(32, hidden_dim, requires_grad=True)
  166. mask = torch.randint(0, 1, (32, hidden_dim))
  167. with background_server(
  168. num_experts=1,
  169. device="cpu",
  170. expert_cls="det_dropout",
  171. num_handlers=1,
  172. hidden_dim=hidden_dim,
  173. optim_cls=None,
  174. ) as server_peer_info:
  175. dht = DHT(initial_peers=server_peer_info.addrs, start=True)
  176. expert = create_remote_experts(
  177. [RemoteExpertInfo(uid="expert.0", peer_info=server_peer_info)],
  178. dht=dht,
  179. )[0]
  180. out = expert(xx, mask)
  181. out_rerun = expert(xx, mask)
  182. (grad,) = torch.autograd.grad(out.sum(), xx, retain_graph=True)
  183. (grad_rerun,) = torch.autograd.grad(out_rerun.sum(), xx, retain_graph=True)
  184. assert torch.allclose(out, out_rerun, atol=atol, rtol=0), "Dropout layer outputs are non-deterministic."
  185. assert torch.allclose(grad, grad_rerun, atol=atol, rtol=0), "Gradients are non-deterministic."
  186. @pytest.mark.forked
  187. def test_compute_expert_scores():
  188. try:
  189. dht = DHT(start=True)
  190. moe = RemoteMixtureOfExperts(
  191. dht=dht, in_features=16, grid_size=(40,), k_best=4, k_min=1, timeout_after_k_min=1, uid_prefix="expert."
  192. )
  193. gx, gy = torch.randn(4, 5, requires_grad=True), torch.randn(4, 3, requires_grad=True)
  194. ii = [[4, 0, 2], [3, 1, 1, 1, 3], [0], [3, 2]]
  195. jj = [[2, 2, 1], [0, 1, 2, 0, 1], [0], [1, 2]]
  196. batch_experts = [
  197. [
  198. RemoteExpert(RemoteExpertInfo(f"expert.{ii[batch_i][expert_i]}.{jj[batch_i][expert_i]}", None), None)
  199. for expert_i in range(len(ii[batch_i]))
  200. ]
  201. for batch_i in range(len(ii))
  202. ] # note: these experts do not exist on server, we use them only to test compute_expert_scores
  203. logits = moe.compute_expert_scores([gx, gy], batch_experts)
  204. torch.softmax(logits, dim=-1).norm(dim=-1).mean().backward()
  205. assert gx.grad.norm().item() > 0 and gy.grad.norm().item(), "compute_expert_scores didn't backprop"
  206. for batch_i in range(len(ii)):
  207. for expert_i in range(len(ii[batch_i])):
  208. assert torch.allclose(
  209. logits[batch_i, expert_i], gx[batch_i, ii[batch_i][expert_i]] + gy[batch_i, jj[batch_i][expert_i]]
  210. ), "compute_expert_scores returned incorrect score"
  211. finally:
  212. dht.shutdown()
  213. @pytest.mark.forked
  214. def test_client_anomaly_detection():
  215. HID_DIM = 16
  216. experts = {}
  217. for i in range(4):
  218. expert = name_to_block["ffn"](HID_DIM)
  219. experts[f"expert.{i}"] = ExpertBackend(
  220. name=f"expert.{i}",
  221. expert=expert,
  222. optimizer=torch.optim.Adam(expert.parameters()),
  223. args_schema=(BatchTensorDescriptor(HID_DIM),),
  224. outputs_schema=BatchTensorDescriptor(HID_DIM),
  225. max_batch_size=16,
  226. )
  227. experts["expert.3"].expert.ffn.weight.data[0, 0] = float("nan")
  228. dht = DHT(start=True)
  229. server = Server(dht, experts, num_connection_handlers=1)
  230. server.start()
  231. try:
  232. server.ready.wait()
  233. client_side_dht = DHT(initial_peers=dht.get_visible_maddrs(), start=True)
  234. dmoe = RemoteMixtureOfExperts(
  235. in_features=16, grid_size=(3,), dht=client_side_dht, k_best=3, uid_prefix="expert.", detect_anomalies=True
  236. )
  237. input = torch.randn(1, 16)
  238. input[0, 0] = float("nan")
  239. with pytest.raises(ValueError):
  240. dmoe(input)
  241. input[0, 0] = 0
  242. output = dmoe(input)
  243. inf_loss = float("inf") * output.sum()
  244. with pytest.raises(ValueError):
  245. inf_loss.backward()
  246. dmoe = RemoteMixtureOfExperts(
  247. in_features=16, grid_size=(4,), dht=client_side_dht, k_best=4, uid_prefix="expert.", detect_anomalies=True
  248. )
  249. output = dmoe(input)
  250. assert output.isfinite().all()
  251. finally:
  252. server.shutdown()