test_optimizer.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. import ctypes
  2. import multiprocessing as mp
  3. import time
  4. import sys
  5. from functools import partial
  6. from typing import Callable, Optional
  7. import numpy as np
  8. import pytest
  9. import torch
  10. import torch.nn as nn
  11. import torch.nn.functional as F
  12. import hivemind
  13. from hivemind.averaging.control import AveragingStage
  14. from hivemind.optim.grad_averager import GradientAverager, GradientAveragerFactory
  15. from hivemind.optim.optimizer import Optimizer
  16. from hivemind.optim.power_sgd_averager import PowerSGDGradientAverager
  17. from hivemind.optim.progress_tracker import ProgressTracker
  18. from hivemind.optim.state_averager import TrainingStateAverager
  19. from hivemind.utils.crypto import RSAPrivateKey
  20. @pytest.mark.forked
  21. @pytest.mark.parametrize(
  22. "grad_averager_factory",
  23. [GradientAverager, partial(PowerSGDGradientAverager, averager_rank=1)],
  24. )
  25. def test_grad_averager(grad_averager_factory: GradientAveragerFactory):
  26. parameter_shape = (5, 5)
  27. dht1 = hivemind.DHT(start=True)
  28. model1 = nn.ParameterDict({"w": nn.Parameter(torch.zeros(parameter_shape))})
  29. averager1 = grad_averager_factory(
  30. model1.parameters(), dht=dht1, prefix="test", target_group_size=2, reuse_grad_buffers=False, start=True
  31. )
  32. dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs())
  33. model2 = nn.ParameterDict({"w": nn.Parameter(torch.zeros(parameter_shape))})
  34. averager2 = grad_averager_factory(
  35. model2.parameters(), dht=dht2, prefix="test", target_group_size=2, reuse_grad_buffers=True, start=True
  36. )
  37. control1 = averager1.schedule_step(hivemind.get_dht_time() + 5)
  38. control2 = averager2.schedule_step(hivemind.get_dht_time() + 5)
  39. for i in range(10):
  40. time.sleep(0.1)
  41. if i % 3 == 0:
  42. loss1 = F.mse_loss(model1.w, torch.ones(parameter_shape))
  43. loss1.backward()
  44. averager1.accumulate_grads_(batch_size=2) # total: 4 times * 2 samples = 8
  45. model1.zero_grad()
  46. else:
  47. loss2 = F.mse_loss(model2.w, -torch.ones(parameter_shape))
  48. loss2.backward()
  49. averager2.accumulate_grads_(batch_size=3) # total: 6 times * 3 samples = 18
  50. # note: we do not call zero grad here because reuse_grad_buffers=True
  51. assert control1.stage == control2.stage == AveragingStage.AWAITING_TRIGGER
  52. peer1_samples, peer1_times, peer2_samples, peer2_times = 8, 4, 18, 6
  53. assert averager1.local_samples_accumulated == peer1_samples and averager1.local_times_accumulated == peer1_times
  54. ref_grads1 = torch.full(parameter_shape, -2 / np.prod(parameter_shape) * averager1.local_times_accumulated)
  55. assert torch.allclose(next(averager1._grad_accumulators()), ref_grads1)
  56. assert averager2.local_samples_accumulated == peer2_samples and averager2.local_times_accumulated == peer2_times
  57. ref_grads2 = torch.full(parameter_shape, 2 / np.prod(parameter_shape) * averager2.local_times_accumulated)
  58. assert torch.allclose(next(averager2._grad_accumulators()), ref_grads2)
  59. averager1.step(control=control1, wait=False)
  60. averager2.step(control=control2, wait=False)
  61. for step in (control1, control2):
  62. step.result() # wait for all-reduce to finish
  63. peer1_weight = peer1_samples / (peer1_samples + peer2_samples)
  64. peer2_weight = peer2_samples / (peer1_samples + peer2_samples)
  65. ref_average = peer1_weight * (ref_grads1 / peer1_times) + peer2_weight * (ref_grads2 / peer2_times)
  66. with averager1.use_averaged_gradients():
  67. assert torch.allclose(model1.w.grad, ref_average)
  68. with averager2.use_averaged_gradients():
  69. assert torch.allclose(model2.w.grad, ref_average)
  70. # after no longer use_averaged_gradients
  71. assert not torch.allclose(model1.w.grad, ref_average)
  72. assert not torch.allclose(model2.w.grad, ref_average)
  73. @pytest.mark.forked
  74. @pytest.mark.parametrize(
  75. "offload_optimizer, reuse_tensors, sync_epoch_when_averaging",
  76. [(False, False, False), (True, True, False), (True, False, False), (False, True, True), (True, False, True)],
  77. )
  78. def test_state_averager(offload_optimizer: bool, reuse_tensors: bool, sync_epoch_when_averaging: bool):
  79. dht1 = hivemind.DHT(start=True)
  80. dht2 = hivemind.DHT(initial_peers=dht1.get_visible_maddrs(), start=True)
  81. torch.manual_seed(1337)
  82. torch.use_deterministic_algorithms(True)
  83. # note: use_deterministic_algorithms does not affect further tests because this test is forked
  84. model1 = nn.Linear(2, 3)
  85. model2 = nn.Linear(2, 3)
  86. extras1 = (torch.randn(2, 2), -torch.rand(1))
  87. extras2 = (-torch.randn(2, 2), torch.rand(1))
  88. common_kwargs = dict(
  89. optimizer=partial(torch.optim.Adam, lr=0.1, betas=(0.9, 0.9)),
  90. scheduler=partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lambda t: 1.0 / max(1, t)),
  91. sync_epoch_when_averaging=sync_epoch_when_averaging,
  92. average_opt_statistics=("exp_avg_sq",),
  93. offload_optimizer=offload_optimizer,
  94. reuse_tensors=reuse_tensors,
  95. target_group_size=2,
  96. prefix="my_exp",
  97. )
  98. avgr1 = TrainingStateAverager(
  99. dht=dht1, params=model1.parameters(), extra_tensors=extras1, start=True, **common_kwargs
  100. )
  101. avgr2 = TrainingStateAverager(
  102. dht=dht2, params=model2.parameters(), extra_tensors=extras2, start=True, **common_kwargs
  103. )
  104. x = torch.ones(2)
  105. for step in range(20):
  106. F.mse_loss(model1(x), torch.ones(3)).mul(2).backward()
  107. avgr1.step(optimizer_step=True, zero_grad=True, averaging_round=(step == 10), delay_averaging=True)
  108. F.mse_loss(model2(x), -torch.ones(3)).backward()
  109. avgr2.step(optimizer_step=True, zero_grad=True, averaging_round=(step == 10), delay_averaging=False)
  110. assert torch.all(model1.weight.grad == 0) and torch.all(model2.weight.grad == 0), "zero grad did not trigger"
  111. assert model1(x).mean() > 0.5 and model2(x).mean() < -0.5, "models did not train properly"
  112. assert torch.allclose(extras1[0], extras2[0]), "first extra tensors were not averaged"
  113. assert torch.allclose(extras1[1], extras2[1]), "second extra tensors were not averaged"
  114. stats1 = avgr1.optimizer.state_dict()["state"][0]["exp_avg_sq"].clone()
  115. stats2 = avgr2.optimizer.state_dict()["state"][0]["exp_avg_sq"].clone()
  116. assert not torch.allclose(stats1, stats2)
  117. avgr1.step(increment_epoch=True)
  118. avgr1.step(increment_epoch=True, averaging_round=True, delay_averaging=True)
  119. avgr2.step(increment_epoch=True, averaging_round=True, delay_averaging=True)
  120. avgr1.step(wait_for_delayed_updates=True)
  121. avgr2.step(wait_for_delayed_updates=True)
  122. assert torch.allclose(model1(x), model2(x)), "model parameters were not averaged correctly"
  123. assert torch.allclose(avgr1.optimizer.state_dict()["state"][0]["exp_avg_sq"], (stats1 + stats2) / 2)
  124. assert torch.allclose(avgr2.optimizer.state_dict()["state"][0]["exp_avg_sq"], (stats1 + stats2) / 2)
  125. assert avgr1.local_epoch == 2
  126. assert avgr2.local_epoch == (2 if sync_epoch_when_averaging else 1)
  127. @pytest.mark.forked
  128. def test_load_state_from_peers():
  129. dht1 = hivemind.DHT(start=True)
  130. dht2 = hivemind.DHT(initial_peers=dht1.get_visible_maddrs(), start=True)
  131. model1 = nn.Linear(2, 3)
  132. model2 = nn.Linear(2, 3)
  133. common_kwargs = dict(
  134. optimizer=partial(torch.optim.SGD, lr=0.1),
  135. scheduler=partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lambda t: 1.0 / max(1, t)),
  136. target_group_size=2,
  137. prefix="my_exp",
  138. )
  139. avgr1 = TrainingStateAverager(
  140. dht=dht1,
  141. params=model1.parameters(),
  142. allow_state_sharing=False,
  143. start=True,
  144. **common_kwargs,
  145. )
  146. avgr2 = TrainingStateAverager(dht=dht2, params=model2.parameters(), start=True, **common_kwargs)
  147. avgr2.local_epoch = 1337
  148. model2.weight.data[...] = 42
  149. time.sleep(0.1)
  150. avgr1.load_state_from_peers()
  151. assert avgr1.local_epoch == 1337
  152. assert torch.all(model1.weight == 42).item()
  153. assert np.allclose(avgr1.optimizer.param_groups[0]["lr"], 0.1 / 1337)
  154. @pytest.mark.forked
  155. def test_progress_tracker():
  156. # note to a curious reader: no, you cannot reduce the timings without compromising realism or stability
  157. prefix = "my_exp"
  158. target_batch_size = 256
  159. dht_root = hivemind.DHT(start=True)
  160. barrier = mp.Barrier(parties=5)
  161. delayed_start_evt = mp.Event()
  162. finished_evt = mp.Event()
  163. emas = mp.Array(ctypes.c_double, 5)
  164. def run_worker(index: int, batch_size: int, period: float, **kwargs):
  165. dht = hivemind.DHT(initial_peers=dht_root.get_visible_maddrs(), start=True)
  166. tracker = ProgressTracker(
  167. dht,
  168. prefix,
  169. target_batch_size,
  170. start=True,
  171. min_refresh_period=0.1,
  172. default_refresh_period=0.2,
  173. max_refresh_period=0.5,
  174. private_key=RSAPrivateKey(),
  175. **kwargs,
  176. )
  177. barrier.wait()
  178. if index == 4:
  179. delayed_start_evt.wait()
  180. local_epoch = 2 if index == 4 else 0
  181. samples_accumulated = 0
  182. while True:
  183. time.sleep(period)
  184. if finished_evt.is_set():
  185. break
  186. samples_accumulated += batch_size
  187. tracker.report_local_progress(local_epoch, samples_accumulated)
  188. if tracker.ready_to_update_epoch:
  189. if index == 4 and local_epoch >= 4:
  190. time.sleep(0.5)
  191. break
  192. with tracker.pause_updates():
  193. local_epoch = tracker.update_epoch(local_epoch + 1)
  194. samples_accumulated = 0
  195. emas[index] = tracker.performance_ema.samples_per_second
  196. tracker.shutdown()
  197. dht.shutdown()
  198. workers = [
  199. mp.Process(target=run_worker, kwargs=dict(index=1, batch_size=12, period=0.6)),
  200. mp.Process(target=run_worker, kwargs=dict(index=2, batch_size=16, period=0.5)),
  201. mp.Process(target=run_worker, kwargs=dict(index=3, batch_size=24, period=0.4)),
  202. mp.Process(target=run_worker, kwargs=dict(index=4, batch_size=64, period=0.4)),
  203. ]
  204. for worker in workers:
  205. worker.start()
  206. tracker = ProgressTracker(
  207. dht_root,
  208. prefix,
  209. target_batch_size,
  210. start=True,
  211. min_refresh_period=0.1,
  212. default_refresh_period=0.2,
  213. max_refresh_period=0.5,
  214. )
  215. barrier.wait()
  216. local_epoch = 0
  217. last_timestamp = hivemind.get_dht_time()
  218. step_time_deltas = []
  219. while local_epoch < 6:
  220. time.sleep(0.1)
  221. if tracker.ready_to_update_epoch:
  222. with tracker.pause_updates():
  223. local_epoch = tracker.update_epoch(local_epoch + 1)
  224. time_delta = hivemind.get_dht_time() - last_timestamp
  225. if local_epoch == 2:
  226. delayed_start_evt.set()
  227. last_timestamp = hivemind.get_dht_time()
  228. step_time_deltas.append(time_delta)
  229. finished_evt.set()
  230. for worker in workers:
  231. worker.join()
  232. tracker.shutdown()
  233. dht_root.shutdown()
  234. assert not tracker.is_alive()
  235. mean_step_time = sum(step_time_deltas) / len(step_time_deltas)
  236. for i in (0, 1, 5): # Without the 4th worker (the fastest one)
  237. assert 1.05 * mean_step_time < step_time_deltas[i] < 2.0 * mean_step_time
  238. for i in (2, 3, 4): # With the 4th worker
  239. assert 0.5 * mean_step_time < step_time_deltas[i] < 0.95 * mean_step_time
  240. assert emas[1] < emas[2] < emas[3] < emas[4]
  241. assert tracker.performance_ema.samples_per_second < 1e-9
  242. @pytest.mark.forked
  243. def test_optimizer(
  244. num_peers: int = 1,
  245. num_clients: int = 0,
  246. target_batch_size: int = 32,
  247. total_epochs: int = 3,
  248. reuse_grad_buffers: bool = True,
  249. delay_grad_averaging: bool = True,
  250. delay_optimizer_step: bool = True,
  251. average_state_every: int = 1,
  252. ):
  253. dht = hivemind.DHT(start=True)
  254. features = torch.randn(100, 5)
  255. targets = features @ torch.randn(5, 1)
  256. optimizer = None
  257. total_samples_accumulated = mp.Value(ctypes.c_int32, 0)
  258. def run_trainer(batch_size: int, batch_time: float, client_mode: bool):
  259. nonlocal optimizer
  260. model = nn.Sequential(nn.Linear(5, 1))
  261. assert isinstance(model, torch.nn.Module), "model_arch must evaluate to a pytorch module"
  262. optimizer = Optimizer(
  263. run_id="test_run",
  264. target_batch_size=target_batch_size,
  265. batch_size_per_step=batch_size,
  266. params=model.parameters(),
  267. optimizer=partial(torch.optim.SGD, lr=0.1),
  268. scheduler=partial(torch.optim.lr_scheduler.StepLR, gamma=0.5, step_size=1),
  269. dht=hivemind.DHT(initial_peers=dht.get_visible_maddrs(), client_mode=client_mode, start=True),
  270. tracker_opts=dict(private_key=RSAPrivateKey(), max_refresh_period=1.0),
  271. averager_opts=dict(request_timeout=0.5),
  272. matchmaking_time=1.0,
  273. averaging_timeout=5.0,
  274. reuse_grad_buffers=reuse_grad_buffers,
  275. delay_grad_averaging=delay_grad_averaging,
  276. delay_optimizer_step=delay_optimizer_step,
  277. average_state_every=average_state_every,
  278. client_mode=client_mode,
  279. grad_averager_factory=GradientAverager,
  280. verbose=False,
  281. )
  282. optimizer.load_state_from_peers()
  283. prev_time = time.perf_counter()
  284. while optimizer.local_epoch < total_epochs:
  285. time.sleep(max(0.0, prev_time + batch_time - time.perf_counter()))
  286. batch = torch.randint(0, len(features), (batch_size,))
  287. loss = F.mse_loss(model(features[batch]), targets[batch])
  288. loss.backward()
  289. optimizer.step()
  290. total_samples_accumulated.value += batch_size
  291. if not reuse_grad_buffers:
  292. optimizer.zero_grad()
  293. prev_time = time.perf_counter()
  294. time.sleep(1.0)
  295. optimizer.shutdown()
  296. return optimizer
  297. peers = []
  298. for index in range(num_peers):
  299. peers.append(
  300. mp.Process(
  301. target=run_trainer,
  302. name=f"trainer-{index}",
  303. kwargs=dict(
  304. batch_size=4 + index,
  305. batch_time=0.3 + 0.2 * index,
  306. client_mode=(index >= num_peers - num_clients),
  307. ),
  308. )
  309. )
  310. for peer in peers[1:]:
  311. peer.start()
  312. peers[0].run()
  313. for peer in peers[1:]:
  314. peer.join()
  315. assert isinstance(optimizer, Optimizer)
  316. assert optimizer.local_epoch == optimizer.tracker.global_epoch == total_epochs
  317. expected_samples_accumulated = target_batch_size * total_epochs
  318. assert expected_samples_accumulated <= total_samples_accumulated.value <= expected_samples_accumulated * 1.2
  319. assert 4 / 0.3 * 0.8 <= optimizer.tracker.performance_ema.samples_per_second <= 4 / 0.3 * 1.2
  320. assert not optimizer.state_averager.is_alive()
  321. assert not optimizer.grad_averager.is_alive()
  322. assert not optimizer.tracker.is_alive()
  323. assert optimizer.scheduled_grads is None or optimizer.scheduled_grads.done()