1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- from functools import partial
- import time
- import pytest
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from sklearn.datasets import load_digits
- from hivemind import RemoteExpert, background_server, DHT, DecentralizedSGD
- @pytest.mark.forked
- def test_training(max_steps: int = 100, threshold: float = 0.9):
- dataset = load_digits(n_class=2)
- X_train, y_train = torch.tensor(dataset['data'], dtype=torch.float), torch.tensor(dataset['target'])
- SGD = partial(torch.optim.SGD, lr=0.05)
- with background_server(num_experts=2, device='cpu', optim_cls=SGD, hidden_dim=64, num_handlers=1,
- no_dht=True) as (server_endpoint, dht_endpoint):
- expert1 = RemoteExpert('expert.0', server_endpoint)
- expert2 = RemoteExpert('expert.1', server_endpoint)
- model = nn.Sequential(expert2, nn.ReLU(), expert1, nn.Linear(64, 2))
- opt = torch.optim.SGD(model.parameters(), lr=0.05)
- for step in range(max_steps):
- opt.zero_grad()
- outputs = model(X_train)
- loss = F.cross_entropy(outputs, y_train)
- loss.backward()
- opt.step()
- accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
- if accuracy >= threshold:
- break
- assert accuracy >= threshold, f"too small accuracy: {accuracy}"
- @pytest.mark.forked
- def test_decentralized_optimizer_step():
- dht_root = DHT(start=True)
- initial_peers = [f"127.0.0.1:{dht_root.port}"]
- param1 = torch.nn.Parameter(torch.zeros(32, 32), requires_grad=True)
- opt1 = DecentralizedSGD([param1], lr=0.1, dht=DHT(initial_peers=initial_peers, start=True),
- prefix='foo', target_group_size=2, verbose=True)
- param2 = torch.nn.Parameter(torch.ones(32, 32), requires_grad=True)
- opt2 = DecentralizedSGD([param2], lr=0.05, dht=DHT(initial_peers=initial_peers, start=True),
- prefix='foo', target_group_size=2, verbose=True)
- assert not torch.allclose(param1, param2)
- (param1.sum() + 300 * param2.sum()).backward()
- opt1.step()
- opt2.step()
- time.sleep(0.5)
- assert torch.allclose(param1, param2)
- reference = 0.5 * (0.0 - 0.1 * 1.0) + 0.5 * (1.0 - 0.05 * 300)
- assert torch.allclose(param1, torch.full_like(param1, reference))
|