test_averaging.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. import asyncio
  2. import random
  3. import numpy as np
  4. import torch
  5. import pytest
  6. import hivemind
  7. from hivemind.client.averaging.allreduce import AllReduceProtocol, split_into_parts, restore_from_parts
  8. from hivemind.client.averaging.load_balancing import load_balance_peers
  9. from hivemind.client.averaging.key_manager import GroupKeyManager
  10. from hivemind.utils import Endpoint
  11. @pytest.mark.forked
  12. @pytest.mark.asyncio
  13. async def test_key_manager():
  14. key_manager = GroupKeyManager(hivemind.DHT(start=True), endpoint='localhvost',
  15. prefix='test_averaging', initial_group_bits='10110',
  16. target_group_size=2)
  17. t = hivemind.get_dht_time()
  18. key = key_manager.current_key
  19. await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 60)
  20. await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61)
  21. q1 = await key_manager.get_averagers(key, only_active=True)
  22. await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 66)
  23. q2 = await key_manager.get_averagers(key, only_active=True)
  24. await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61, looking_for_group=False)
  25. q3 = await key_manager.get_averagers(key, only_active=True)
  26. q4 = await key_manager.get_averagers(key, only_active=False)
  27. q5 = await key_manager.get_averagers('nonexistent_key.0b0101', only_active=False)
  28. assert len(q1) == 2 and ('localhvost', t + 60) in q1 and ('localhvost2', t + 61) in q1
  29. assert len(q2) == 2 and ('localhvost', t + 66) in q2 and ('localhvost2', t + 61) in q2
  30. assert len(q3) == 1 and ('localhvost', t + 66) in q3
  31. assert len(q4) == 2 and ('localhvost', t + 66) in q4 and ('localhvost2', t + 61) in q2
  32. assert len(q5) == 0
  33. @pytest.mark.forked
  34. @pytest.mark.parametrize("n_client_mode_peers", [0, 2])
  35. def test_allreduce_once(n_client_mode_peers):
  36. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  37. n_peers = 4
  38. should_listen = [False] * n_client_mode_peers + [True] * (n_peers - n_client_mode_peers)
  39. random.shuffle(should_listen)
  40. tensors1 = [torch.randn(123), torch.zeros(3)]
  41. tensors2 = [torch.rand(123), torch.ones(3)]
  42. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  43. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  44. reference = [(tensors1[i] + tensors2[i] + tensors3[i] + tensors4[i]) / 4 for i in range(len(tensors1))]
  45. averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
  46. prefix='mygroup', listen=listen, listen_on='127.0.0.1:*',
  47. start=True)
  48. for tensors, listen in zip([tensors1, tensors2, tensors3, tensors4], should_listen)]
  49. futures = []
  50. for averager in averagers:
  51. futures.append(averager.step(wait=False))
  52. for future in futures:
  53. result = future.result()
  54. for averager in averagers:
  55. assert averager.endpoint in result
  56. for averager in averagers:
  57. with averager.get_tensors() as averaged_tensors:
  58. for ref, our in zip(reference, averaged_tensors):
  59. assert torch.allclose(ref, our, atol=1e-6)
  60. for averager in averagers:
  61. averager.shutdown()
  62. dht.shutdown()
  63. @pytest.mark.forked
  64. def test_allreduce_weighted(n_client_mode_peers: int = 2):
  65. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  66. n_peers = 4
  67. should_listen = [False] * n_client_mode_peers + [True] * (n_peers - n_client_mode_peers)
  68. random.shuffle(should_listen)
  69. tensors1 = [torch.randn(123), torch.zeros(3)]
  70. tensors2 = [torch.rand(123), torch.ones(3)]
  71. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  72. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  73. averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
  74. prefix='mygroup', listen=listen, listen_on='127.0.0.1:*',
  75. start=True)
  76. for tensors, listen in zip([tensors1, tensors2, tensors3, tensors4], should_listen)]
  77. weights = list(map(float, np.random.rand(len(averagers)) * 10 + 0.01))
  78. reference = [(tensors1[i] * weights[0] + tensors2[i] * weights[1] + tensors3[i] * weights[2]
  79. + tensors4[i] * weights[3]) / sum(weights) for i in range(len(tensors1))]
  80. futures = []
  81. for averager, weight in zip(averagers, weights):
  82. futures.append(averager.step(weight=weight, wait=False))
  83. for future in futures:
  84. future.result()
  85. for future, averager in zip(futures, averagers):
  86. with averager.get_tensors() as averaged_tensors:
  87. for ref, our in zip(reference, averaged_tensors):
  88. assert torch.allclose(ref, our, atol=1e-6)
  89. for averager in averagers:
  90. averager.shutdown()
  91. dht.shutdown()
  92. def compute_mean_std(averagers, unbiased=True):
  93. results = []
  94. for averager in averagers:
  95. with averager.get_tensors() as tensors:
  96. results.append([tensor.clone() for tensor in tensors])
  97. results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
  98. means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
  99. stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
  100. return means, stds
  101. @pytest.mark.forked
  102. def test_allreduce_grid():
  103. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  104. averagers = [hivemind.DecentralizedAverager(
  105. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  106. prefix='mygroup', initial_group_bits=bin(i // 2)[2:].rjust(2, '0'), start=True)
  107. for i in range(8)]
  108. [means0], [stds0] = compute_mean_std(averagers)
  109. assert not torch.allclose(stds0, torch.zeros_like(stds0))
  110. prev_means, prev_stds = means0, stds0
  111. for i in range(5):
  112. step_futures = [averager.step(wait=False) for averager in averagers]
  113. groups = [future.result() for future in step_futures]
  114. [means], [stds] = compute_mean_std(averagers)
  115. assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
  116. assert all(len(group) == 2 for group in groups)
  117. if i <= 2:
  118. assert torch.all(torch.le(stds, prev_stds))
  119. else:
  120. assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
  121. for averager in averagers:
  122. averager.shutdown()
  123. dht.shutdown()
  124. @pytest.mark.forked
  125. def test_allgather():
  126. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  127. averagers = [hivemind.DecentralizedAverager([torch.ones(1)], dht=dht, target_group_size=4, averaging_expiration=15,
  128. prefix='mygroup', initial_group_bits='000', listen_on='127.0.0.1:*',
  129. start=True)
  130. for _ in range(8)]
  131. futures = []
  132. for i, averager in enumerate(averagers):
  133. futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo='bar')))
  134. assert len(set(repr(sorted(future.result())) for future in futures)) == 2
  135. reference_metadata = {averager.endpoint: dict(batch_size=123 + i, foo='bar')
  136. for i, averager in enumerate(averagers)}
  137. for future in futures:
  138. gathered = future.result()
  139. assert len(gathered) == 4
  140. for endpoint in gathered:
  141. assert gathered[endpoint] == reference_metadata[endpoint]
  142. for averager in averagers:
  143. averager.shutdown()
  144. dht.shutdown()
  145. @pytest.mark.forked
  146. @pytest.mark.asyncio
  147. async def test_allreduce_protocol():
  148. """ Run group allreduce protocol manually without grpc, see if the internal logic is working as intended """
  149. peers = "alice", "bob", "carol", "colab"
  150. tensors_by_peer = {peer: [torch.randn(3, 128), torch.rand(32), torch.tensor(i, dtype=torch.float32)]
  151. for i, peer in enumerate(peers)}
  152. group_id = random.getrandbits(160).to_bytes(length=20, byteorder='big')
  153. allreduce_protocols = [AllReduceProtocol(
  154. group_id=group_id, endpoint=peer, tensors=tensors_by_peer[peer],
  155. ordered_group_endpoints=peers, part_sizes=(150, 200, 67, 0))
  156. for peer in peers]
  157. async def _accumulate(sender: Endpoint, recipient: Endpoint):
  158. sender_allreduce = allreduce_protocols[peers.index(sender)]
  159. recipient_allreduce = allreduce_protocols[peers.index(recipient)]
  160. averaged_part = await recipient_allreduce.accumulate_part(
  161. source=sender, remote_part=sender_allreduce.local_tensor_parts[recipient])
  162. sender_allreduce.register_averaged_part(source=recipient, averaged_part=averaged_part)
  163. await asyncio.wait({_accumulate(sender, recipient) for sender in peers for recipient in peers
  164. if recipient != "colab"})
  165. reference_tensors = [
  166. sum(tensors_by_peer[peer][i] for peer in peers) / len(peers)
  167. for i in range(len(tensors_by_peer[peers[0]]))
  168. ]
  169. for peer, allreduce in zip(peers, allreduce_protocols):
  170. assert allreduce.future.done()
  171. averaged_tensors = await allreduce
  172. assert len(averaged_tensors) == len(reference_tensors)
  173. assert all(torch.allclose(our, ref, atol=1e-6, rtol=0)
  174. for our, ref in zip(averaged_tensors, reference_tensors))
  175. @pytest.mark.forked
  176. def test_partitioning():
  177. for _ in range(100):
  178. tensors = []
  179. for _ in range(random.randint(1, 5)):
  180. ndim = random.randint(0, 4)
  181. shape = torch.Size([random.randint(0, 16) for _ in range(ndim)])
  182. make_tensor = random.choice([torch.rand, torch.randn, torch.zeros, torch.ones])
  183. tensors.append(make_tensor(shape))
  184. total_size = sum(map(torch.Tensor.numel, tensors))
  185. if total_size == 0:
  186. continue
  187. num_chunks = random.randint(1, min(100, sum(x.numel() for x in tensors)))
  188. part_sizes = load_balance_peers(total_size, [None] * num_chunks)
  189. chunks = split_into_parts(tensors, part_sizes)
  190. assert len(chunks) == num_chunks
  191. shapes = [tensor.shape for tensor in tensors]
  192. restored = restore_from_parts(chunks, shapes)
  193. assert len(restored) == len(tensors)
  194. assert all(new.shape == old.shape for new, old in zip(restored, tensors))
  195. assert all(torch.allclose(new, old) for new, old in zip(restored, tensors))
  196. def get_cost(vector_size, partitions, throughputs):
  197. return max((vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(throughputs[i], 1e-9)
  198. for i in range(len(partitions)))
  199. def check_optimality(vector_size, throughputs, ref_partitions):
  200. partitions = list(load_balance_peers(vector_size, throughputs))
  201. assert get_cost(vector_size, partitions, throughputs) <= get_cost(vector_size, ref_partitions, throughputs)
  202. @pytest.mark.forked
  203. def test_load_balancing():
  204. check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
  205. check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
  206. check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
  207. check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
  208. check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
  209. check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
  210. assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
  211. assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
  212. assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
  213. assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
  214. assert load_balance_peers(100, (None, None)) == (50, 50)
  215. assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
  216. assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
  217. with pytest.raises(AssertionError):
  218. load_balance_peers(100, (0, 0, 0))
  219. for i in range(10):
  220. vector_size = np.random.randint(1, 1024 ** 3)
  221. num_peers = np.random.randint(1, 256)
  222. scale = 1e-9 + np.random.rand() * 1e5
  223. throughputs = np.random.rand(num_peers) * scale + 1e-6
  224. min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
  225. assignment = load_balance_peers(vector_size, throughputs, min_size)
  226. assert np.sum(assignment) == vector_size
  227. assert np.min(assignment) >= 0
  228. @pytest.mark.forked
  229. def test_too_few_peers():
  230. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  231. averagers = [hivemind.DecentralizedAverager(
  232. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  233. averaging_expiration=1, request_timeout=0.5,
  234. prefix='mygroup', initial_group_bits=bin(i)[2:].rjust(3, '0'), start=True)
  235. for i in range(4)]
  236. step_futures = [averager.step(wait=False) for averager in averagers]
  237. for future in step_futures:
  238. assert len(future.result()) == 2
  239. for averager in averagers:
  240. averager.shutdown()
  241. dht.shutdown()
  242. @pytest.mark.forked
  243. def test_overcrowded(num_peers=16):
  244. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  245. averagers = [hivemind.DecentralizedAverager(
  246. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  247. averaging_expiration=1, request_timeout=0.5,
  248. prefix='mygroup', initial_group_bits='', start=True)
  249. for _ in range(num_peers)]
  250. for t in range(5):
  251. step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
  252. assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
  253. for averager in averagers:
  254. averager.shutdown()
  255. dht.shutdown()
  256. @pytest.mark.skip
  257. @pytest.mark.forked
  258. def test_load_state_from_peers():
  259. num_calls = 0
  260. super_metadata = dict(x=123)
  261. super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
  262. class TestAverager(hivemind.DecentralizedAverager):
  263. def get_current_state(self):
  264. """
  265. Get current state and send it to a peer. executed in the host process. Meant to be overriden.
  266. :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
  267. """
  268. nonlocal num_calls, super_metadata, super_tensors
  269. num_calls += 1
  270. return super_metadata, super_tensors
  271. dht_root = hivemind.DHT(start=True)
  272. initial_peers = [f'{hivemind.LOCALHOST}:{dht_root.port}']
  273. #TODO: this code should switch to p2p endpoints
  274. dht1 = hivemind.DHT(initial_peers=initial_peers, start=True)
  275. averager1 = TestAverager([torch.randn(3), torch.rand(5)],
  276. dht=dht1, start=True,
  277. prefix='demo-run', target_group_size=2)
  278. dht2 = hivemind.DHT(initial_peers=initial_peers, start=True)
  279. dht2.get('demo-run.all_averagers')
  280. averager2 = TestAverager([torch.randn(3), torch.rand(5)],
  281. dht=dht2, start=True,
  282. prefix='demo-run', target_group_size=2)
  283. assert num_calls == 0
  284. got_metadata, got_tensors = averager2.load_state_from_peers()
  285. assert num_calls == 1
  286. assert got_metadata == super_metadata
  287. assert all(map(torch.allclose, got_tensors, super_tensors))
  288. super_metadata['y'] = 123
  289. super_tensors[1][2] = 9
  290. assert num_calls == 1
  291. assert got_metadata != super_metadata
  292. assert not all(map(torch.allclose, got_tensors, super_tensors))
  293. got_metadata, got_tensors = averager2.load_state_from_peers()
  294. assert num_calls == 2
  295. assert got_metadata == super_metadata
  296. assert all(map(torch.allclose, got_tensors, super_tensors))
  297. @pytest.mark.forked
  298. def test_getset_bits():
  299. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  300. averager = hivemind.DecentralizedAverager([torch.randn(3)], dht=dht, start=True,
  301. prefix='test_prefix', target_group_size=2)
  302. averager.set_group_bits('00101011101010')
  303. assert averager.get_group_bits() == '00101011101010'