benchmark_throughput.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. import argparse
  2. import multiprocessing as mp
  3. import random
  4. import sys
  5. import time
  6. import torch
  7. from test_utils import print_device_info
  8. import hivemind
  9. from hivemind import find_open_port
  10. from hivemind.server import layers
  11. from hivemind.utils.threading import increase_file_limit
  12. def client_process(can_start, benchmarking_failed, port, num_experts, batch_size, hid_dim, num_batches, backprop=True):
  13. torch.set_num_threads(1)
  14. can_start.wait()
  15. experts = [hivemind.RemoteExpert(f"expert{i}", endpoint=f"{hivemind.LOCALHOST}:{port}") for i in range(num_experts)]
  16. try:
  17. dummy_batch = torch.randn(batch_size, hid_dim)
  18. for batch_i in range(num_batches):
  19. expert = random.choice(experts)
  20. out = expert(dummy_batch)
  21. if backprop:
  22. out.sum().backward()
  23. except BaseException as e:
  24. benchmarking_failed.set()
  25. raise e
  26. def benchmark_throughput(num_experts=16, num_handlers=None, num_clients=128, num_batches_per_client=16,
  27. expert_cls='ffn', hid_dim=1024, batch_size=2048, max_batch_size=None, backprop=True,
  28. device=None, port=None):
  29. assert not hasattr(torch.cuda, 'is_initialized') or not torch.cuda.is_initialized() \
  30. or torch.device(device) == torch.device('cpu')
  31. assert expert_cls in layers.name_to_block
  32. port = port or find_open_port()
  33. max_batch_size = max_batch_size or batch_size * 4
  34. num_handlers = max(1, num_handlers or num_clients // 2)
  35. benchmarking_failed = mp.Event()
  36. can_start = mp.Event()
  37. timestamps = dict(started=time.perf_counter())
  38. try:
  39. # start clients and await server
  40. # Note: client processes must be launched BEFORE touching gpu, even torch.cuda.is_available can cause trouble
  41. clients = [
  42. mp.Process(
  43. target=client_process, name=f'client_process-{i}',
  44. args=(can_start, benchmarking_failed, port, num_experts, batch_size,
  45. hid_dim, num_batches_per_client, backprop))
  46. for i in range(num_clients)]
  47. for client in clients:
  48. client.daemon = True
  49. client.start()
  50. timestamps['launched_clients'] = timestamps['began_launching_server'] = time.perf_counter()
  51. # start server
  52. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  53. experts = {}
  54. for i in range(num_experts):
  55. expert = torch.jit.script(layers.name_to_block[expert_cls](hid_dim))
  56. experts[f'expert{i}'] = hivemind.ExpertBackend(name=f'expert{i}',
  57. expert=expert, optimizer=torch.optim.Adam(expert.parameters()),
  58. args_schema=(hivemind.BatchTensorDescriptor(hid_dim),),
  59. outputs_schema=hivemind.BatchTensorDescriptor(hid_dim),
  60. max_batch_size=max_batch_size,
  61. )
  62. timestamps['created_experts'] = time.perf_counter()
  63. server = hivemind.Server(None, experts, listen_on=f"{hivemind.LOCALHOST}:{port}",
  64. num_connection_handlers=num_handlers, device=device)
  65. server.start()
  66. server.ready.wait()
  67. timestamps['server_ready'] = time.perf_counter()
  68. can_start.set()
  69. for client in clients:
  70. client.join()
  71. timestamps['clients_finished'] = time.perf_counter()
  72. except BaseException as e:
  73. benchmarking_failed.set()
  74. raise e
  75. finally:
  76. for client in clients:
  77. if client.is_alive():
  78. client.terminate()
  79. server.shutdown()
  80. timestamps['server_shutdown_finished'] = time.perf_counter()
  81. server.join()
  82. sys.stdout.flush()
  83. sys.stderr.flush()
  84. time_between = lambda key1, key2: \
  85. abs(timestamps[key2] - timestamps[key1]) if (key1 in timestamps and key2 in timestamps) else float('nan')
  86. total_examples = batch_size * num_clients * num_batches_per_client
  87. print('\n' * 3)
  88. print("Benchmark finished, status:" + ["Success", "Failure"][benchmarking_failed.is_set()])
  89. print(f"Server parameters: num_experts={num_experts}, num_handlers={num_handlers}, max_batch_size={max_batch_size},"
  90. f" expert_cls={expert_cls}, hid_dim={hid_dim}, device={device}")
  91. print(f"Client parameters: num_clients={num_clients}, num_batches_per_client={num_batches_per_client}, "
  92. f"batch_size={batch_size}, backprop={backprop}")
  93. print("Results: ")
  94. print(f"\tServer startup took {time_between('began_launching_server', 'server_ready') :.3f} s. "
  95. f"({time_between('began_launching_server', 'created_experts') :.3f} s. experts + "
  96. f"{time_between('created_experts', 'server_ready') :.3f} s. networking)")
  97. print(f"\tProcessed {total_examples} examples in {time_between('server_ready', 'clients_finished') :.3f}")
  98. print(f"\tThroughput for {'forward + backward' if backprop else 'forward'} passes: "
  99. f"{total_examples / time_between('server_ready', 'clients_finished') :.3f} samples / s.")
  100. print(f"\tBenchmarking took {time_between('started', 'server_shutdown_finished') :.3f} s.")
  101. if benchmarking_failed.is_set():
  102. print("Note: benchmark code failed, timing/memory results only indicate time till failure!")
  103. print_device_info(device)
  104. print(flush=True)
  105. assert not benchmarking_failed.is_set()
  106. if __name__ == "__main__":
  107. parser = argparse.ArgumentParser()
  108. parser.add_argument('--preset', type=str, default='default', required=False)
  109. parser.add_argument('--num_batches_per_client', type=int, default=16, required=False)
  110. args = parser.parse_args()
  111. if args.preset in ('default', 'ffn_forward_backward'):
  112. benchmark_throughput()
  113. elif args.preset == 'ffn_forward':
  114. benchmark_throughput(backprop=False, num_batches_per_client=args.num_batches_per_client)
  115. elif args.preset == 'ffn_small_batch':
  116. benchmark_throughput(backprop=False, num_experts=4, batch_size=32, max_batch_size=8192,
  117. num_batches_per_client=args.num_batches_per_client)
  118. elif args.preset == 'ffn_small_batch_512clients':
  119. benchmark_throughput(backprop=True, num_experts=1, batch_size=1, max_batch_size=8192,
  120. num_clients=512, num_batches_per_client=args.num_batches_per_client)
  121. elif args.preset == 'ffn_small_batch_512clients_32handlers':
  122. benchmark_throughput(backprop=True, num_experts=1, batch_size=1, max_batch_size=8192, num_handlers=32,
  123. num_clients=512, num_batches_per_client=args.num_batches_per_client)
  124. elif args.preset == 'ffn_massive':
  125. increase_file_limit()
  126. benchmark_throughput(backprop=False, num_clients=512, batch_size=512,
  127. max_batch_size=8192, num_batches_per_client=args.num_batches_per_client)
  128. elif args.preset == 'minimalistic':
  129. benchmark_throughput(num_experts=1, num_clients=1, num_handlers=1,
  130. num_batches_per_client=args.num_batches_per_client)
  131. elif args.preset == 'nop':
  132. benchmark_throughput(expert_cls='nop', backprop=False, num_batches_per_client=args.num_batches_per_client)
  133. else:
  134. raise ValueError(f"No such benchmark preset: {args.preset}")