123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import argparse
- import math
- import threading
- import time
- import torch
- import hivemind
- from hivemind.proto import runtime_pb2
- from hivemind.utils import LOCALHOST, get_logger, increase_file_limit
- logger = get_logger(__name__)
- def sample_tensors(hid_size, num_layers):
- tensors = []
- for i in range(num_layers):
- tensors.append(torch.randn(hid_size, 3 * hid_size))
- tensors.append(torch.randn(3 * hid_size))
- tensors.append(torch.randn(3 * hid_size))
- tensors.append(torch.randn(hid_size, hid_size))
- tensors.append(torch.ones(hid_size))
- tensors.append(torch.zeros(hid_size))
- tensors.append(torch.randn(hid_size, 4 * hid_size))
- tensors.append(torch.randn(4 * hid_size))
- tensors.append(torch.ones(4 * hid_size))
- tensors.append(torch.randn(2, hid_size, hid_size, 2))
- tensors.append(torch.randn(hid_size))
- tensors.append(torch.randn(hid_size))
- tensors.append(torch.randn(hid_size))
- return tuple(tensors)
- def benchmark_averaging(num_peers: int, target_group_size: int, num_rounds: int,
- averaging_expiration: float, request_timeout: float, round_timeout: float,
- hid_size: int, num_layers: int, spawn_dtime: float):
- dht_root = hivemind.DHT(listen_on=f'{LOCALHOST}:*', start=True)
- num_groups = 2 ** int(round(math.log2(num_peers / target_group_size)))
- nbits = int(round(math.log2(num_groups)))
- peer_tensors = [sample_tensors(hid_size, num_layers)
- for _ in range(num_peers)]
- processes = {dht_root}
- lock_stats = threading.Lock()
- successful_steps = total_steps = 0
- def run_averager(index):
- nonlocal successful_steps, total_steps, lock_stats
- dht = hivemind.DHT(listen_on=f'{LOCALHOST}:*',
- initial_peers=[f"{LOCALHOST}:{dht_root.port}"],
- start=True)
- initial_bits = bin(index % num_groups)[2:].rjust(nbits, '0')
- averager = hivemind.averaging.DecentralizedAverager(
- peer_tensors[i], dht, prefix='my_tensor', initial_group_bits=initial_bits, listen_on=f"{LOCALHOST}:*",
- compression_type=runtime_pb2.CompressionType.FLOAT16, target_group_size=target_group_size,
- averaging_expiration=averaging_expiration, request_timeout=request_timeout, start=True)
- processes.update({dht, averager})
- logger.info(f'Averager {index}: started on endpoint {averager.endpoint}, group_bits: {averager.get_group_bits()}')
- for step in range(num_rounds):
- try:
- success = averager.step(timeout=round_timeout) is not None
- except:
- success = False
- with lock_stats:
- successful_steps += int(success)
- total_steps += 1
- logger.info(f"Averager {index}: {'finished' if success else 'failed'} step {step}")
- logger.info(f"Averager {index}: done.")
- threads = []
- for i in range(num_peers):
- thread = threading.Thread(target=run_averager, args=[i])
- threads.append(thread)
- thread.start()
- time.sleep(spawn_dtime)
- t = time.time()
- for thread in threads:
- thread.join()
- logger.info(f"Benchmark finished in {time.time() - t:.3f} seconds.")
- logger.info(f"Success rate: {successful_steps / total_steps} ({successful_steps} out of {total_steps} attempts)")
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--num_peers', type=int, default=16, required=False)
- parser.add_argument('--target_group_size', type=int, default=4, required=False)
- parser.add_argument('--num_rounds', type=int, default=5, required=False)
- parser.add_argument('--hid_size', type=int, default=256, required=False)
- parser.add_argument('--num_layers', type=int, default=3, required=False)
- parser.add_argument('--averaging_expiration', type=float, default=5, required=False)
- parser.add_argument('--round_timeout', type=float, default=15, required=False)
- parser.add_argument('--request_timeout', type=float, default=1, required=False)
- parser.add_argument('--spawn_dtime', type=float, default=0.1, required=False)
- parser.add_argument('--increase_file_limit', action="store_true")
- args = vars(parser.parse_args())
- if args.pop('increase_file_limit', False):
- increase_file_limit()
- benchmark_averaging(**args)
|