run_server.py 5.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. from functools import partial
  2. from pathlib import Path
  3. import configargparse
  4. import torch
  5. from hivemind.moe.server import Server
  6. from hivemind.moe.server.layers import schedule_name_to_scheduler
  7. from hivemind.proto.runtime_pb2 import CompressionType
  8. from hivemind.utils.limits import increase_file_limit
  9. from hivemind.utils.logging import get_logger
  10. logger = get_logger(__name__)
  11. def main():
  12. # fmt:off
  13. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  14. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  15. parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
  16. help="'localhost' for local connections only, '0.0.0.0' for ipv4 '[::]' for ipv6")
  17. parser.add_argument('--num_experts', type=int, default=None, required=False, help="The number of experts to serve")
  18. parser.add_argument('--expert_pattern', type=str, default=None, required=False,
  19. help='all expert uids will follow this pattern, e.g. "myexpert.[0:256].[0:1024]" will'
  20. ' sample random expert uids between myexpert.0.0 and myexpert.255.1023 . Use either'
  21. ' num_experts and this or expert_uids')
  22. parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
  23. help="specify the exact list of expert uids to create. Use either this or num_experts"
  24. " and expert_pattern, not both")
  25. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  26. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
  27. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  28. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  29. help='server will use this many processes to handle incoming requests')
  30. parser.add_argument('--min_batch_size', type=int, default=1,
  31. help='Minimum required batch size for all expert operations')
  32. parser.add_argument('--max_batch_size', type=int, default=16384,
  33. help='The total number of examples in the same batch will not exceed this value')
  34. parser.add_argument('--device', type=str, default=None, required=False,
  35. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  36. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  37. parser.add_argument('--scheduler', type=str, choices=schedule_name_to_scheduler.keys(), default='none',
  38. help='LR scheduler type to use')
  39. parser.add_argument('--num_warmup_steps', type=int, required=False,
  40. help='The number of warmup steps for LR schedule')
  41. parser.add_argument('--num_total_steps', type=int, required=False, help='The total number of steps for LR schedule')
  42. parser.add_argument('--clip_grad_norm', type=float, required=False, help='Maximum gradient norm used for clipping')
  43. parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
  44. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[],
  45. help='multiaddrs of one or more active DHT peers (if you want to join an existing DHT)')
  46. parser.add_argument('--increase_file_limit', action='store_true',
  47. help='On *nix, this will increase the max number of processes '
  48. 'a server can spawn before hitting "Too many open files"; Use at your own risk.')
  49. parser.add_argument('--compression', type=str, default='NONE', required=False, help='Tensor compression for gRPC')
  50. parser.add_argument('--checkpoint_dir', type=Path, required=False, help='Directory to store expert checkpoints')
  51. parser.add_argument('--stats_report_interval', type=int, required=False,
  52. help='Interval between two reports of batch processing performance statistics')
  53. parser.add_argument('--custom_module_path', type=str, required=False,
  54. help='Path of a file with custom nn.modules, wrapped into special decorator')
  55. # fmt:on
  56. args = vars(parser.parse_args())
  57. args.pop("config", None)
  58. optimizer = args.pop("optimizer")
  59. if optimizer == "adam":
  60. optim_cls = torch.optim.Adam
  61. elif optimizer == "sgd":
  62. optim_cls = partial(torch.optim.SGD, lr=0.01)
  63. elif optimizer == "none":
  64. optim_cls = None
  65. else:
  66. raise ValueError("optim_cls must be adam, sgd or none")
  67. if args.pop("increase_file_limit"):
  68. increase_file_limit()
  69. compression_type = args.pop("compression")
  70. compression = getattr(CompressionType, compression_type)
  71. server = Server.create(**args, optim_cls=optim_cls, start=True, compression=compression)
  72. try:
  73. server.join()
  74. except KeyboardInterrupt:
  75. logger.info("Caught KeyboardInterrupt, shutting down")
  76. finally:
  77. server.shutdown()
  78. if __name__ == "__main__":
  79. main()