start_server.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. import argparse
  2. import resource
  3. import os
  4. import sys
  5. import torch
  6. import tesseract
  7. sys.path.append(os.path.dirname(__file__) + '/../tests')
  8. from test_utils import layers, find_open_port
  9. if __name__ == "__main__":
  10. parser = argparse.ArgumentParser()
  11. parser.add_argument('--expert_cls', type=str, default='ffn', required=False)
  12. parser.add_argument('--num_experts', type=int, default=1, required=False)
  13. parser.add_argument('--num_handlers', type=int, default=None, required=False)
  14. parser.add_argument('--hidden_dim', type=int, default=1024, required=False)
  15. parser.add_argument('--max_batch_size', type=int, default=16384, required=False)
  16. parser.add_argument('--expert_prefix', type=str, default='expert', required=False)
  17. parser.add_argument('--expert_offset', type=int, default=0, required=False)
  18. parser.add_argument('--device', type=str, default=None, required=False)
  19. parser.add_argument('--port', type=int, default=None, required=False)
  20. parser.add_argument('--host', type=str, default='0.0.0.0', required=False)
  21. parser.add_argument('--no_network', action='store_true')
  22. parser.add_argument('--initial_peers', type=str, default="[]", required=False)
  23. parser.add_argument('--network_port', type=int, default=None, required=False)
  24. parser.add_argument('--increase_file_limit', action='store_true')
  25. args = parser.parse_args()
  26. if args.increase_file_limit:
  27. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  28. try:
  29. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  30. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  31. except:
  32. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  33. assert args.expert_cls in layers.name_to_block
  34. args.num_handlers = args.num_handlers or args.num_experts * 8
  35. device = args.device or ('cuda' if torch.cuda.is_available() else 'cpu')
  36. # initialize network
  37. network = None
  38. if not args.no_network:
  39. initial_peers = eval(args.initial_peers)
  40. print("Parsed initial peers:", initial_peers)
  41. network = tesseract.TesseractNetwork(*initial_peers, port=args.network_port or find_open_port(), start=True)
  42. print(f"Running network node on port {network.port}")
  43. # initialize experts
  44. experts = {}
  45. for i in range(args.num_experts):
  46. expert = torch.jit.script(layers.name_to_block[args.expert_cls](args.hidden_dim))
  47. expert_uid = f'{args.expert_prefix}.{i + args.expert_offset}'
  48. experts[expert_uid] = tesseract.ExpertBackend(name=expert_uid,
  49. expert=expert, opt=torch.optim.Adam(expert.parameters()),
  50. args_schema=(tesseract.BatchTensorProto(args.hidden_dim),),
  51. outputs_schema=tesseract.BatchTensorProto(args.hidden_dim),
  52. max_batch_size=args.max_batch_size,
  53. )
  54. # start server
  55. server = tesseract.TesseractServer(
  56. network, experts, addr=args.host, port=args.port or find_open_port(),
  57. conn_handler_processes=args.num_handlers, device=device)
  58. print(f"Running server at {server.addr}:{server.port}")
  59. print(f"Active experts of type {args.expert_cls}: {list(experts.keys())}")
  60. try:
  61. server.run()
  62. finally:
  63. server.shutdown()