benchmark_throughput.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. import argparse
  2. import multiprocessing as mp
  3. import random
  4. import resource
  5. import sys
  6. import time
  7. import torch
  8. from test_utils import layers, print_device_info, find_open_port
  9. import tesseract
  10. def client_process(can_start, benchmarking_failed, port, num_experts, batch_size, hid_dim, num_batches, backprop=True):
  11. can_start.wait()
  12. experts = [tesseract.RemoteExpert(f"expert{i}", port=port) for i in range(num_experts)]
  13. try:
  14. dummy_batch = torch.randn(batch_size, hid_dim)
  15. for batch_i in range(num_batches):
  16. expert = random.choice(experts)
  17. out = expert(dummy_batch)
  18. if backprop:
  19. out.sum().backward()
  20. except BaseException as e:
  21. benchmarking_failed.set()
  22. raise e
  23. def benchmark_throughput(num_experts=16, num_handlers=None, num_clients=128, num_batches_per_client=16,
  24. expert_cls='ffn', hid_dim=1024, batch_size=2048, max_batch_size=None, backprop=True,
  25. device=None, port=None):
  26. assert not hasattr(torch.cuda, 'is_initialized') or not torch.cuda.is_initialized() \
  27. or torch.device(device) == torch.device('cpu')
  28. assert expert_cls in layers.name_to_block
  29. port = port or find_open_port()
  30. max_batch_size = max_batch_size or batch_size * 4
  31. num_handlers = max(1, num_handlers or num_clients // 2)
  32. benchmarking_failed = mp.Event()
  33. can_start = mp.Event()
  34. timestamps = dict(started=time.perf_counter())
  35. try:
  36. # start clients and await server
  37. # Note: client processes must be launched BEFORE touching gpu, even torch.cuda.is_available can cause trouble
  38. clients = [
  39. mp.Process(
  40. target=client_process, name=f'client_process-{i}',
  41. args=(can_start, benchmarking_failed, port, num_experts, batch_size,
  42. hid_dim, num_batches_per_client, backprop))
  43. for i in range(num_clients)]
  44. for client in clients:
  45. client.daemon = True
  46. client.start()
  47. timestamps['launched_clients'] = timestamps['began_launching_server'] = time.perf_counter()
  48. # start server
  49. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  50. experts = {}
  51. for i in range(num_experts):
  52. expert = torch.jit.script(layers.name_to_block[expert_cls](hid_dim))
  53. experts[f'expert{i}'] = tesseract.ExpertBackend(name=f'expert{i}',
  54. expert=expert, opt=torch.optim.Adam(expert.parameters()),
  55. args_schema=(tesseract.BatchTensorProto(hid_dim),),
  56. outputs_schema=tesseract.BatchTensorProto(hid_dim),
  57. max_batch_size=max_batch_size,
  58. )
  59. timestamps['created_experts'] = time.perf_counter()
  60. server = tesseract.TesseractServer(None, experts, port=port, conn_handler_processes=num_handlers, device=device)
  61. server.start()
  62. server.ready.wait()
  63. timestamps['server_ready'] = time.perf_counter()
  64. can_start.set()
  65. for client in clients:
  66. client.join()
  67. timestamps['clients_finished'] = time.perf_counter()
  68. except BaseException as e:
  69. benchmarking_failed.set()
  70. raise e
  71. finally:
  72. for client in clients:
  73. if client.is_alive():
  74. client.terminate()
  75. server.shutdown()
  76. timestamps['server_shutdown_finished'] = time.perf_counter()
  77. server.join()
  78. sys.stdout.flush()
  79. sys.stderr.flush()
  80. time_between = lambda key1, key2: \
  81. abs(timestamps[key2] - timestamps[key1]) if (key1 in timestamps and key2 in timestamps) else float('nan')
  82. total_examples = batch_size * num_clients * num_batches_per_client
  83. print('\n' * 3)
  84. print("Benchmark finished, status:", ["Success", "Failure"][benchmarking_failed.is_set()])
  85. print(f"Server parameters: {num_experts=} {num_handlers=} {max_batch_size=} {expert_cls=} {hid_dim=} {device=}")
  86. print(f"Client parameters: {num_clients=} {num_batches_per_client=} {batch_size=} {backprop=}")
  87. print(f"Results: ")
  88. print(f"\tServer startup took {time_between('began_launching_server', 'server_ready') :.3f} s. "
  89. f"({time_between('began_launching_server', 'created_experts') :.3f} s. experts + "
  90. f"{time_between('created_experts', 'server_ready') :.3f} s. networking)")
  91. print(f"\tProcessed {total_examples} examples in {time_between('server_ready', 'clients_finished') :.3f}")
  92. print(f"\tThroughput for {'forward + backward' if backprop else 'forward'} passes: "
  93. f"{total_examples / time_between('server_ready', 'clients_finished') :.3f} samples / s.")
  94. print(f"\tBenchmarking took {time_between('started', 'server_shutdown_finished') :.3f} s.")
  95. if benchmarking_failed.is_set():
  96. print("Note: benchmark code failed, timing/memory results only indicate time till failure!")
  97. print_device_info(device)
  98. print(flush=True)
  99. if __name__ == "__main__":
  100. parser = argparse.ArgumentParser()
  101. parser.add_argument('--preset', type=str, default='default', required=False)
  102. parser.add_argument('--num_batches_per_client', type=int, default=16, required=False)
  103. args = parser.parse_args()
  104. if args.preset in ('default', 'ffn_forward_backward'):
  105. benchmark_throughput()
  106. elif args.preset == 'ffn_forward':
  107. benchmark_throughput(backprop=False, num_batches_per_client=args.num_batches_per_client)
  108. elif args.preset == 'ffn_small_batch':
  109. benchmark_throughput(backprop=False, num_experts=4, batch_size=32, max_batch_size=8192,
  110. num_batches_per_client=args.num_batches_per_client)
  111. elif args.preset == 'ffn_massive':
  112. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  113. try:
  114. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  115. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  116. except:
  117. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  118. benchmark_throughput(backprop=False, num_clients=512, batch_size=512,
  119. max_batch_size=8192, num_batches_per_client=args.num_batches_per_client)
  120. elif args.preset == 'minimalistic':
  121. benchmark_throughput(num_experts=1, num_clients=1, num_handlers=1)
  122. elif args.preset == 'nop':
  123. benchmark_throughput(expert_cls='nop', backprop=False, num_batches_per_client=args.num_batches_per_client)
  124. else:
  125. raise ValueError(f"No such benchmark preset: {args.preset}")