123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- import argparse
- import multiprocessing as mp
- import random
- import sys
- import time
- import torch
- import hivemind
- from hivemind import find_open_port
- from hivemind.moe.server import layers
- from hivemind.utils.limits import increase_file_limit
- from hivemind.utils.logging import get_logger
- logger = get_logger(__name__)
- def print_device_info(device=None):
- """Prints device stats. Code from https://stackoverflow.com/a/53374933/12891528"""
- device = torch.device(device or ('cuda' if torch.cuda.is_available() else 'cpu'))
- logger.info(f'Using device: {device}')
- # Additional Info when using cuda
- if device.type == 'cuda':
- logger.info(torch.cuda.get_device_name(0))
- logger.info(f'Memory Usage:')
- logger.info(f'Allocated: {round(torch.cuda.memory_allocated(0) / 1024 ** 3, 1)} GB')
- logger.info(f'Cached: {round(torch.cuda.memory_cached(0) / 1024 ** 3, 1)} GB')
- def client_process(can_start, benchmarking_failed, port, num_experts, batch_size, hid_dim, num_batches, backprop=True):
- torch.set_num_threads(1)
- can_start.wait()
- experts = [hivemind.RemoteExpert(f"expert{i}", endpoint=f"{hivemind.LOCALHOST}:{port}") for i in range(num_experts)]
- try:
- dummy_batch = torch.randn(batch_size, hid_dim)
- for batch_i in range(num_batches):
- expert = random.choice(experts)
- out = expert(dummy_batch)
- if backprop:
- out.sum().backward()
- except BaseException as e:
- benchmarking_failed.set()
- raise e
- def benchmark_throughput(num_experts=16, num_handlers=None, num_clients=128, num_batches_per_client=16,
- expert_cls='ffn', hid_dim=1024, batch_size=2048, max_batch_size=None, backprop=True,
- device=None, port=None):
- assert not hasattr(torch.cuda, 'is_initialized') or not torch.cuda.is_initialized() \
- or torch.device(device) == torch.device('cpu')
- assert expert_cls in layers.name_to_block
- port = port or find_open_port()
- max_batch_size = max_batch_size or batch_size * 4
- num_handlers = max(1, num_handlers or num_clients // 2)
- benchmarking_failed = mp.Event()
- can_start = mp.Event()
- timestamps = dict(started=time.perf_counter())
- try:
- # start clients and await server
- # Note: client processes must be launched BEFORE touching gpu, even torch.cuda.is_available can cause trouble
- clients = [
- mp.Process(
- target=client_process, name=f'client_process-{i}',
- args=(can_start, benchmarking_failed, port, num_experts, batch_size,
- hid_dim, num_batches_per_client, backprop))
- for i in range(num_clients)]
- for client in clients:
- client.daemon = True
- client.start()
- timestamps['launched_clients'] = timestamps['began_launching_server'] = time.perf_counter()
- # start server
- device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
- experts = {}
- for i in range(num_experts):
- expert = torch.jit.script(layers.name_to_block[expert_cls](hid_dim))
- experts[f'expert{i}'] = hivemind.ExpertBackend(name=f'expert{i}',
- expert=expert,
- optimizer=torch.optim.Adam(expert.parameters()),
- args_schema=(hivemind.BatchTensorDescriptor(hid_dim),),
- outputs_schema=hivemind.BatchTensorDescriptor(hid_dim),
- max_batch_size=max_batch_size,
- )
- timestamps['created_experts'] = time.perf_counter()
- server = hivemind.moe.Server(None, experts, listen_on=f"{hivemind.LOCALHOST}:{port}",
- num_connection_handlers=num_handlers, device=device)
- server.start()
- server.ready.wait()
- timestamps['server_ready'] = time.perf_counter()
- can_start.set()
- for client in clients:
- client.join()
- timestamps['clients_finished'] = time.perf_counter()
- except BaseException as e:
- benchmarking_failed.set()
- raise e
- finally:
- for client in clients:
- if client.is_alive():
- client.terminate()
- server.shutdown()
- timestamps['server_shutdown_finished'] = time.perf_counter()
- server.join()
- sys.stdout.flush()
- sys.stderr.flush()
- time_between = lambda key1, key2: \
- abs(timestamps[key2] - timestamps[key1]) if (key1 in timestamps and key2 in timestamps) else float('nan')
- total_examples = batch_size * num_clients * num_batches_per_client
- logger.info("Benchmark finished, status:" + ["Success", "Failure"][benchmarking_failed.is_set()])
- logger.info(f"Server parameters: num_experts={num_experts}, num_handlers={num_handlers}, "
- f"max_batch_size={max_batch_size}, expert_cls={expert_cls}, hid_dim={hid_dim}, device={device}")
- logger.info(f"Client parameters: num_clients={num_clients}, num_batches_per_client={num_batches_per_client}, "
- f"batch_size={batch_size}, backprop={backprop}")
- logger.info("Results: ")
- logger.info(f"\tServer startup took {time_between('began_launching_server', 'server_ready') :.3f} s. "
- f"({time_between('began_launching_server', 'created_experts') :.3f} s. experts + "
- f"{time_between('created_experts', 'server_ready') :.3f} s. networking)")
- logger.info(f"\tProcessed {total_examples} examples in {time_between('server_ready', 'clients_finished') :.3f}")
- logger.info(f"\tThroughput for {'forward + backward' if backprop else 'forward'} passes: "
- f"{total_examples / time_between('server_ready', 'clients_finished') :.3f} samples / s.")
- logger.info(f"\tBenchmarking took {time_between('started', 'server_shutdown_finished') :.3f} s.")
- if benchmarking_failed.is_set():
- logger.info("Note: benchmark code failed, timing/memory results only indicate time till failure!")
- print_device_info(device)
- sys.stdout.flush()
- sys.stderr.flush()
- assert not benchmarking_failed.is_set()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--preset', type=str, default='default', required=False)
- parser.add_argument('--num_batches_per_client', type=int, default=16, required=False)
- args = parser.parse_args()
- if args.preset in ('default', 'ffn_forward_backward'):
- benchmark_throughput()
- elif args.preset == 'ffn_forward':
- benchmark_throughput(backprop=False, num_batches_per_client=args.num_batches_per_client)
- elif args.preset == 'ffn_small_batch':
- benchmark_throughput(backprop=False, num_experts=4, batch_size=32, max_batch_size=8192,
- num_batches_per_client=args.num_batches_per_client)
- elif args.preset == 'ffn_small_batch_512clients':
- benchmark_throughput(backprop=True, num_experts=1, batch_size=1, max_batch_size=8192,
- num_clients=512, num_batches_per_client=args.num_batches_per_client)
- elif args.preset == 'ffn_small_batch_512clients_32handlers':
- benchmark_throughput(backprop=True, num_experts=1, batch_size=1, max_batch_size=8192, num_handlers=32,
- num_clients=512, num_batches_per_client=args.num_batches_per_client)
- elif args.preset == 'ffn_massive':
- increase_file_limit()
- benchmark_throughput(backprop=False, num_clients=512, batch_size=512,
- max_batch_size=8192, num_batches_per_client=args.num_batches_per_client)
- elif args.preset == 'minimalistic':
- benchmark_throughput(num_experts=1, num_clients=1, num_handlers=1,
- num_batches_per_client=args.num_batches_per_client)
- elif args.preset == 'nop':
- benchmark_throughput(expert_cls='nop', backprop=False, num_batches_per_client=args.num_batches_per_client)
- else:
- raise ValueError(f"No such benchmark preset: {args.preset}")
|