123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- from dataclasses import dataclass, field
- from typing import List, Optional
- from transformers import TrainingArguments
- @dataclass
- class BaseTrainingArguments:
- experiment_prefix: str = field(
- metadata={"help": "A unique 'name' of this experiment, used to store metadata on the DHT"}
- )
- initial_peers: List[str] = field(
- default_factory=list,
- metadata={
- "help": "Multiaddrs of the peers that will welcome you into the existing collaboration. "
- "Example: /ip4/203.0.113.1/tcp/31337/p2p/XXXX /ip4/203.0.113.2/tcp/7777/p2p/YYYY"
- },
- )
- use_ipfs: bool = field(
- default=False,
- metadata={
- "help": "Use IPFS to find initial_peers. If enabled, you only need to provide /p2p/XXXX part of the multiaddrs "
- "for the initial_peers (no need to specify a particular IPv4/IPv6 host and port)"
- },
- )
- host_maddrs: List[str] = field(
- default_factory=lambda: ["/ip4/0.0.0.0/tcp/0"],
- metadata={
- "help": "Multiaddrs to listen for external connections from other p2p instances. "
- "Defaults to all IPv4 interfaces and the TCP protocol: /ip4/0.0.0.0/tcp/0"
- },
- )
- announce_maddrs: List[str] = field(
- default_factory=list,
- metadata={"help": "Visible multiaddrs the host announces for external connections from other p2p instances"},
- )
- @dataclass
- class AveragerArguments:
- averaging_expiration: float = field(
- default=5.0, metadata={"help": "Averaging group will wait for stragglers for at most this many seconds"}
- )
- averaging_timeout: float = field(
- default=30.0, metadata={"help": "Give up on averaging step after this many seconds"}
- )
- min_refresh_period: float = field(
- default=0.5, metadata={"help": "Wait for at least this many seconds before fetching new collaboration state"}
- )
- max_refresh_period: float = field(
- default=30, metadata={"help": "Wait for at most this many seconds before fetching new collaboration state"}
- )
- default_refresh_period: float = field(
- default=3, metadata={"help": "Attempt to fetch collaboration state every this often until successful"}
- )
- expected_drift_peers: float = field(
- default=3, metadata={"help": "Trainer assumes that this many new peers can join per step"}
- )
- expected_drift_rate: float = field(
- default=0.2, metadata={"help": "Trainer assumes that this fraction of current size can join per step"}
- )
- performance_ema_alpha: float = field(
- default=0.1, metadata={"help": "Uses this alpha for moving average estimate of samples per second"}
- )
- target_group_size: int = field(default=256, metadata={"help": "Maximum group size for all-reduce"})
- metadata_expiration: float = field(
- default=120, metadata={"help": "Peer's metadata will be removed if not updated in this many seconds"}
- )
- @dataclass
- class CollaborativeOptimizerArguments:
- target_batch_size: int = field(
- default=4096,
- metadata={"help": "Perform optimizer step after all peers collectively accumulate this many samples"},
- )
- client_mode: bool = field(
- default=False,
- metadata={"help": "Of True, runs training without incoming connections, in a firewall-compatible mode"},
- )
- batch_size_lead: int = field(
- default=0,
- metadata={"help": "Optional: begin looking for group in advance, this many samples before target_batch_size"},
- )
- bandwidth: float = field(
- default=100.0,
- metadata={"help": "Available network bandwidth, in mbps (used for load balancing in all-reduce)"},
- )
- compression: str = field(
- default="FLOAT16", metadata={"help": "Use this compression when averaging parameters/gradients"}
- )
- @dataclass
- class CollaborationArguments(CollaborativeOptimizerArguments, BaseTrainingArguments):
- statistics_expiration: float = field(
- default=600, metadata={"help": "Statistics will be removed if not updated in this many seconds"}
- )
- backup_every_steps: int = field(
- default=10, metadata={"help": "Frequency of backups to restore from in case of encountering NaN values"}
- )
- @dataclass
- class DatasetArguments:
- dataset_path: Optional[str] = field(
- default="data/albert_tokenized_wikitext", metadata={"help": "Path to the tokenized dataset"}
- )
- tokenizer_path: Optional[str] = field(default="data/tokenizer", metadata={"help": "Path to the tokenizer"})
- config_path: Optional[str] = field(
- default="https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
- metadata={"help": "Path to the model config"},
- )
- cache_dir: Optional[str] = field(default="data", metadata={"help": "Path to the cache"})
- @dataclass
- class AlbertTrainingArguments(TrainingArguments):
- dataloader_num_workers: int = 4
- per_device_train_batch_size: int = 4
- per_device_eval_batch_size: int = 4
- gradient_accumulation_steps: int = 2
- seq_length: int = 512
- max_steps: int = 125_000 # please note: this affects both number of steps and learning rate schedule
- learning_rate: float = 0.00176
- warmup_steps: int = 5000
- adam_epsilon: float = 1e-6
- weight_decay: float = 0.01
- max_grad_norm: float = 1.0
- clamp_value: float = 10000.0
- fp16: bool = True
- fp16_opt_level: str = "O2"
- do_train: bool = True
- logging_steps: int = 100
- save_total_limit: int = 2
- save_steps: int = 500
- output_dir: str = "outputs"
|