test_averaging.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. import asyncio
  2. import random
  3. import numpy as np
  4. import torch
  5. import pytest
  6. import hivemind
  7. from hivemind.client.averaging.allreduce import AllReduceProtocol, split_into_parts, restore_from_parts
  8. from hivemind.client.averaging.load_balancing import load_balance_peers
  9. from hivemind.client.averaging.key_manager import GroupKeyManager
  10. from hivemind.utils import Endpoint
  11. @pytest.mark.forked
  12. @pytest.mark.asyncio
  13. async def test_key_manager():
  14. key_manager = GroupKeyManager(hivemind.DHT(start=True), endpoint='localhvost',
  15. prefix='test_averaging', initial_group_bits='10110',
  16. target_group_size=2)
  17. t = hivemind.get_dht_time()
  18. key = key_manager.current_key
  19. await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 60)
  20. await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61)
  21. q1 = await key_manager.get_averagers(key, only_active=True)
  22. await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 66)
  23. q2 = await key_manager.get_averagers(key, only_active=True)
  24. await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61, looking_for_group=False)
  25. q3 = await key_manager.get_averagers(key, only_active=True)
  26. q4 = await key_manager.get_averagers(key, only_active=False)
  27. q5 = await key_manager.get_averagers('nonexistent_key.0b0101', only_active=False)
  28. assert len(q1) == 2 and ('localhvost', t + 60) in q1 and ('localhvost2', t + 61) in q1
  29. assert len(q2) == 2 and ('localhvost', t + 66) in q2 and ('localhvost2', t + 61) in q2
  30. assert len(q3) == 1 and ('localhvost', t + 66) in q3
  31. assert len(q4) == 2 and ('localhvost', t + 66) in q4 and ('localhvost2', t + 61) in q2
  32. assert len(q5) == 0
  33. @pytest.mark.forked
  34. @pytest.mark.parametrize("n_client_mode_peers", [0, 2])
  35. def test_allreduce_once(n_client_mode_peers):
  36. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  37. n_peers = 4
  38. should_listen = [False] * n_client_mode_peers + [True] * (n_peers - n_client_mode_peers)
  39. random.shuffle(should_listen)
  40. tensors1 = [torch.randn(123), torch.zeros(3)]
  41. tensors2 = [torch.rand(123), torch.ones(3)]
  42. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  43. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  44. reference = [(tensors1[i] + tensors2[i] + tensors3[i] + tensors4[i]) / 4 for i in range(len(tensors1))]
  45. averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
  46. prefix='mygroup', listen=listen, listen_on='127.0.0.1:*',
  47. start=True)
  48. for tensors, listen in zip([tensors1, tensors2, tensors3, tensors4], should_listen)]
  49. futures = []
  50. for averager in averagers:
  51. futures.append(averager.step(wait=False))
  52. for future in futures:
  53. result = future.result()
  54. for averager in averagers:
  55. assert averager.endpoint in result
  56. for averager in averagers:
  57. with averager.get_tensors() as averaged_tensors:
  58. for ref, our in zip(reference, averaged_tensors):
  59. assert torch.allclose(ref, our, atol=1e-6)
  60. for averager in averagers:
  61. averager.shutdown()
  62. dht.shutdown()
  63. def compute_mean_std(averagers, unbiased=True):
  64. results = []
  65. for averager in averagers:
  66. with averager.get_tensors() as tensors:
  67. results.append([tensor.clone() for tensor in tensors])
  68. results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
  69. means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
  70. stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
  71. return means, stds
  72. @pytest.mark.forked
  73. def test_allreduce_grid():
  74. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  75. averagers = [hivemind.DecentralizedAverager(
  76. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  77. prefix='mygroup', initial_group_bits=bin(i // 2)[2:].rjust(2, '0'), start=True)
  78. for i in range(8)]
  79. [means0], [stds0] = compute_mean_std(averagers)
  80. assert not torch.allclose(stds0, torch.zeros_like(stds0))
  81. prev_means, prev_stds = means0, stds0
  82. for i in range(5):
  83. step_futures = [averager.step(wait=False) for averager in averagers]
  84. groups = [future.result() for future in step_futures]
  85. [means], [stds] = compute_mean_std(averagers)
  86. assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
  87. assert all(len(group) == 2 for group in groups)
  88. if i <= 2:
  89. assert torch.all(torch.le(stds, prev_stds))
  90. else:
  91. assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
  92. for averager in averagers:
  93. averager.shutdown()
  94. dht.shutdown()
  95. @pytest.mark.forked
  96. def test_allgather():
  97. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  98. averagers = [hivemind.DecentralizedAverager([torch.ones(1)], dht=dht, target_group_size=4, averaging_expiration=15,
  99. prefix='mygroup', initial_group_bits='000', listen_on='127.0.0.1:*',
  100. start=True)
  101. for _ in range(8)]
  102. futures = []
  103. for i, averager in enumerate(averagers):
  104. futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo='bar')))
  105. assert len(set(repr(sorted(future.result())) for future in futures)) == 2
  106. reference_metadata = {averager.endpoint: dict(batch_size=123 + i, foo='bar')
  107. for i, averager in enumerate(averagers)}
  108. for future in futures:
  109. gathered = future.result()
  110. assert len(gathered) == 4
  111. for endpoint in gathered:
  112. assert gathered[endpoint] == reference_metadata[endpoint]
  113. for averager in averagers:
  114. averager.shutdown()
  115. dht.shutdown()
  116. @pytest.mark.forked
  117. @pytest.mark.asyncio
  118. async def test_allreduce_protocol():
  119. """ Run group allreduce protocol manually without grpc, see if the internal logic is working as intended """
  120. peers = "alice", "bob", "carol", "colab"
  121. tensors_by_peer = {peer: [torch.randn(3, 128), torch.rand(32), torch.tensor(i, dtype=torch.float32)]
  122. for i, peer in enumerate(peers)}
  123. group_id = random.getrandbits(160).to_bytes(length=20, byteorder='big')
  124. allreduce_protocols = [AllReduceProtocol(
  125. group_id=group_id, endpoint=peer, tensors=tensors_by_peer[peer],
  126. ordered_group_endpoints=peers, part_sizes=(150, 200, 67, 0))
  127. for peer in peers]
  128. async def _accumulate(sender: Endpoint, recipient: Endpoint):
  129. sender_allreduce = allreduce_protocols[peers.index(sender)]
  130. recipient_allreduce = allreduce_protocols[peers.index(recipient)]
  131. averaged_part = await recipient_allreduce.accumulate_part(
  132. source=sender, remote_part=sender_allreduce.local_tensor_parts[recipient])
  133. sender_allreduce.register_averaged_part(source=recipient, averaged_part=averaged_part)
  134. await asyncio.wait({_accumulate(sender, recipient) for sender in peers for recipient in peers
  135. if sender != recipient and recipient != "colab"})
  136. reference_tensors = [
  137. sum(tensors_by_peer[peer][i] for peer in peers) / len(peers)
  138. for i in range(len(tensors_by_peer[peers[0]]))
  139. ]
  140. for peer, allreduce in zip(peers, allreduce_protocols):
  141. assert allreduce.future.done()
  142. averaged_tensors = await allreduce
  143. assert len(averaged_tensors) == len(reference_tensors)
  144. assert all(torch.allclose(our, ref, atol=1e-6, rtol=0)
  145. for our, ref in zip(averaged_tensors, reference_tensors))
  146. @pytest.mark.forked
  147. def test_partitioning():
  148. for _ in range(100):
  149. tensors = []
  150. for _ in range(random.randint(1, 5)):
  151. ndim = random.randint(0, 4)
  152. shape = torch.Size([random.randint(0, 16) for _ in range(ndim)])
  153. make_tensor = random.choice([torch.rand, torch.randn, torch.zeros, torch.ones])
  154. tensors.append(make_tensor(shape))
  155. total_size = sum(map(torch.Tensor.numel, tensors))
  156. if total_size == 0:
  157. continue
  158. num_chunks = random.randint(1, min(100, sum(x.numel() for x in tensors)))
  159. part_sizes = load_balance_peers(total_size, [None] * num_chunks)
  160. chunks = split_into_parts(tensors, part_sizes)
  161. assert len(chunks) == num_chunks
  162. shapes = [tensor.shape for tensor in tensors]
  163. restored = restore_from_parts(chunks, shapes)
  164. assert len(restored) == len(tensors)
  165. assert all(new.shape == old.shape for new, old in zip(restored, tensors))
  166. assert all(torch.allclose(new, old) for new, old in zip(restored, tensors))
  167. def get_cost(vector_size, partitions, throughputs):
  168. return max((vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(throughputs[i], 1e-9)
  169. for i in range(len(partitions)))
  170. def check_optimality(vector_size, throughputs, ref_partitions):
  171. partitions = list(load_balance_peers(vector_size, throughputs))
  172. assert get_cost(vector_size, partitions, throughputs) <= get_cost(vector_size, ref_partitions, throughputs)
  173. @pytest.mark.forked
  174. def test_load_balancing():
  175. check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
  176. check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
  177. check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
  178. check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
  179. check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
  180. check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
  181. assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
  182. assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
  183. assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
  184. assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
  185. assert load_balance_peers(100, (None, None)) == (50, 50)
  186. assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
  187. assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
  188. with pytest.raises(AssertionError):
  189. load_balance_peers(100, (0, 0, 0))
  190. for i in range(10):
  191. vector_size = np.random.randint(1, 1024 ** 3)
  192. num_peers = np.random.randint(1, 256)
  193. scale = 1e-9 + np.random.rand() * 1e5
  194. throughputs = np.random.rand(num_peers) * scale + 1e-6
  195. min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
  196. assignment = load_balance_peers(vector_size, throughputs, min_size)
  197. assert np.sum(assignment) == vector_size
  198. assert np.min(assignment) >= 0
  199. @pytest.mark.forked
  200. def test_too_few_peers():
  201. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  202. averagers = [hivemind.DecentralizedAverager(
  203. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  204. averaging_expiration=1, request_timeout=0.5,
  205. prefix='mygroup', initial_group_bits=bin(i)[2:].rjust(3, '0'), start=True)
  206. for i in range(4)]
  207. step_futures = [averager.step(wait=False) for averager in averagers]
  208. for future in step_futures:
  209. assert len(future.result()) == 2
  210. for averager in averagers:
  211. averager.shutdown()
  212. dht.shutdown()
  213. @pytest.mark.forked
  214. def test_overcrowded(num_peers=16):
  215. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  216. averagers = [hivemind.DecentralizedAverager(
  217. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  218. averaging_expiration=1, request_timeout=0.5,
  219. prefix='mygroup', initial_group_bits='', start=True)
  220. for _ in range(num_peers)]
  221. for t in range(5):
  222. step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
  223. assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
  224. for averager in averagers:
  225. averager.shutdown()
  226. dht.shutdown()
  227. @pytest.mark.forked
  228. def test_load_state_from_peers():
  229. num_calls = 0
  230. super_metadata = dict(x=123)
  231. super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
  232. class TestAverager(hivemind.DecentralizedAverager):
  233. def get_current_state(self):
  234. """
  235. Get current state and send it to a peer. executed in the host process. Meant to be overriden.
  236. :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
  237. """
  238. nonlocal num_calls, super_metadata, super_tensors
  239. num_calls += 1
  240. return super_metadata, super_tensors
  241. dht_root = hivemind.DHT(start=True)
  242. initial_peers = [f'{hivemind.LOCALHOST}:{dht_root.port}']
  243. dht1 = hivemind.DHT(initial_peers=initial_peers, start=True)
  244. averager1 = TestAverager([torch.randn(3), torch.rand(5)],
  245. dht=dht1, start=True,
  246. prefix='demo-run', target_group_size=2)
  247. dht2 = hivemind.DHT(initial_peers=initial_peers, start=True)
  248. dht2.get('demo-run.all_averagers')
  249. averager2 = TestAverager([torch.randn(3), torch.rand(5)],
  250. dht=dht2, start=True,
  251. prefix='demo-run', target_group_size=2)
  252. assert num_calls == 0
  253. got_metadata, got_tensors = averager2.load_state_from_peers()
  254. assert num_calls == 1
  255. assert got_metadata == super_metadata
  256. assert all(map(torch.allclose, got_tensors, super_tensors))
  257. super_metadata['y'] = 123
  258. super_tensors[1][2] = 9
  259. assert num_calls == 1
  260. assert got_metadata != super_metadata
  261. assert not all(map(torch.allclose, got_tensors, super_tensors))
  262. got_metadata, got_tensors = averager2.load_state_from_peers()
  263. assert num_calls == 2
  264. assert got_metadata == super_metadata
  265. assert all(map(torch.allclose, got_tensors, super_tensors))
  266. @pytest.mark.forked
  267. def test_getset_bits():
  268. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  269. averager = hivemind.DecentralizedAverager([torch.randn(3)], dht=dht, start=True,
  270. prefix='test_prefix', target_group_size=2)
  271. averager.set_group_bits('00101011101010')
  272. assert averager.get_group_bits() == '00101011101010'