123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 |
- import asyncio
- import random
- import numpy as np
- import torch
- import pytest
- import hivemind
- from hivemind.client.averaging.allreduce import AllReduceProtocol, split_into_parts, restore_from_parts, AveragingMode
- from hivemind.client.averaging.load_balancing import load_balance_peers
- from hivemind.client.averaging.key_manager import GroupKeyManager
- from hivemind.utils import Endpoint
- @pytest.mark.forked
- @pytest.mark.asyncio
- async def test_key_manager():
- key_manager = GroupKeyManager(hivemind.DHT(start=True), endpoint='localhvost',
- prefix='test_averaging', initial_group_bits='10110',
- target_group_size=2)
- t = hivemind.get_dht_time()
- key = key_manager.current_key
- await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 60)
- await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61)
- q1 = await key_manager.get_averagers(key, only_active=True)
- await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 66)
- q2 = await key_manager.get_averagers(key, only_active=True)
- await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61, looking_for_group=False)
- q3 = await key_manager.get_averagers(key, only_active=True)
- q4 = await key_manager.get_averagers(key, only_active=False)
- q5 = await key_manager.get_averagers('nonexistent_key.0b0101', only_active=False)
- assert len(q1) == 2 and ('localhvost', t + 60) in q1 and ('localhvost2', t + 61) in q1
- assert len(q2) == 2 and ('localhvost', t + 66) in q2 and ('localhvost2', t + 61) in q2
- assert len(q3) == 1 and ('localhvost', t + 66) in q3
- assert len(q4) == 2 and ('localhvost', t + 66) in q4 and ('localhvost2', t + 61) in q2
- assert len(q5) == 0
- def _test_allreduce_once(n_clients, n_aux):
- dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
- n_peers = 4
- modes = [AveragingMode.CLIENT] * n_clients + [AveragingMode.AUX] * n_aux + [AveragingMode.NODE] * (n_peers - n_clients - n_aux)
- random.shuffle(modes)
-
- tensors1 = [torch.randn(123), torch.zeros(3)]
- tensors2 = [torch.rand(123), torch.ones(3)]
- tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
- tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
- peer_tensors = [tensors1, tensors2, tensors3, tensors4]
-
- reference = [sum(tensors[i] for tensors, mode in zip(peer_tensors, modes)
- if mode != AveragingMode.AUX) / max(1, n_peers - n_aux) for i in range(len(tensors1))]
- averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
- prefix='mygroup', listen=mode != AveragingMode.CLIENT, listen_on='127.0.0.1:*',
- auxiliary=mode == AveragingMode.AUX, start=True)
- for tensors, mode in zip(peer_tensors, modes)]
- futures = []
- for averager in averagers:
- futures.append(averager.step(wait=False))
- for future in futures:
- result = future.result()
- for averager in averagers:
- assert averager.endpoint in result
- for averager in averagers:
- if averager.mode != AveragingMode.AUX:
- with averager.get_tensors() as averaged_tensors:
- for ref, our in zip(reference, averaged_tensors):
- assert torch.allclose(ref, our, atol=1e-6)
- for averager in averagers:
- averager.shutdown()
- dht.shutdown()
- @pytest.mark.forked
- @pytest.mark.parametrize("n_clients", [0, 1, 2])
- @pytest.mark.parametrize("n_aux", [0, 1, 2])
- def test_allreduce_once(n_clients, n_aux):
- _test_allreduce_once(n_clients, n_aux)
- @pytest.mark.forked
- @pytest.mark.parametrize("n_clients, n_aux", [(0, 4), (1, 3), (0, 3)])
- def test_allreduce_once_edge_cases(n_clients, n_aux):
- _test_allreduce_once(n_clients, n_aux)
- @pytest.mark.forked
- def test_allreduce_weighted(n_client_mode_peers: int = 2):
- dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
- n_peers = 4
- should_listen = [False] * n_client_mode_peers + [True] * (n_peers - n_client_mode_peers)
- random.shuffle(should_listen)
- tensors1 = [torch.randn(123), torch.zeros(3)]
- tensors2 = [torch.rand(123), torch.ones(3)]
- tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
- tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
- averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
- prefix='mygroup', listen=listen, listen_on='127.0.0.1:*',
- start=True)
- for tensors, listen in zip([tensors1, tensors2, tensors3, tensors4], should_listen)]
- weights = list(map(float, np.random.rand(len(averagers)) * 10 + 0.01))
- reference = [(tensors1[i] * weights[0] + tensors2[i] * weights[1] + tensors3[i] * weights[2]
- + tensors4[i] * weights[3]) / sum(weights) for i in range(len(tensors1))]
- futures = []
- for averager, weight in zip(averagers, weights):
- futures.append(averager.step(weight=weight, wait=False))
- for future in futures:
- future.result()
- for future, averager in zip(futures, averagers):
- with averager.get_tensors() as averaged_tensors:
- for ref, our in zip(reference, averaged_tensors):
- assert torch.allclose(ref, our, atol=1e-6)
- for averager in averagers:
- averager.shutdown()
- dht.shutdown()
- def compute_mean_std(averagers, unbiased=True):
- results = []
- for averager in averagers:
- with averager.get_tensors() as tensors:
- results.append([tensor.clone() for tensor in tensors])
- results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
- means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
- stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
- return means, stds
- @pytest.mark.forked
- def test_allreduce_grid():
- dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
- averagers = [hivemind.DecentralizedAverager(
- averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
- prefix='mygroup', initial_group_bits=bin(i // 2)[2:].rjust(2, '0'), start=True)
- for i in range(8)]
- [means0], [stds0] = compute_mean_std(averagers)
- assert not torch.allclose(stds0, torch.zeros_like(stds0))
- prev_means, prev_stds = means0, stds0
- for i in range(5):
- step_futures = [averager.step(wait=False) for averager in averagers]
- groups = [future.result() for future in step_futures]
- [means], [stds] = compute_mean_std(averagers)
- assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
- assert all(len(group) == 2 for group in groups)
- if i <= 2:
- assert torch.all(torch.le(stds, prev_stds))
- else:
- assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
- for averager in averagers:
- averager.shutdown()
- dht.shutdown()
- @pytest.mark.forked
- def test_allgather():
- dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
- averagers = [hivemind.DecentralizedAverager([torch.ones(1)], dht=dht, target_group_size=4, averaging_expiration=15,
- prefix='mygroup', initial_group_bits='000', listen_on='127.0.0.1:*',
- start=True)
- for _ in range(8)]
- futures = []
- for i, averager in enumerate(averagers):
- futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo='bar')))
- assert len(set(repr(sorted(future.result())) for future in futures)) == 2
- reference_metadata = {averager.endpoint: dict(batch_size=123 + i, foo='bar')
- for i, averager in enumerate(averagers)}
- for future in futures:
- gathered = future.result()
- assert len(gathered) == 4
- for endpoint in gathered:
- assert gathered[endpoint] == reference_metadata[endpoint]
- for averager in averagers:
- averager.shutdown()
- dht.shutdown()
- @pytest.mark.forked
- @pytest.mark.asyncio
- async def test_allreduce_protocol():
- """ Run group allreduce protocol manually without grpc, see if the internal logic is working as intended """
- peers = "alice", "bob", "carol", "colab"
- tensors_by_peer = {peer: [torch.randn(3, 128), torch.rand(32), torch.tensor(i, dtype=torch.float32)]
- for i, peer in enumerate(peers)}
- group_id = random.getrandbits(160).to_bytes(length=20, byteorder='big')
- allreduce_protocols = [AllReduceProtocol(
- group_id=group_id, endpoint=peer, tensors=tensors_by_peer[peer],
- ordered_group_endpoints=peers, part_sizes=(150, 200, 67, 0))
- for peer in peers]
- async def _accumulate(sender: Endpoint, recipient: Endpoint):
- sender_allreduce = allreduce_protocols[peers.index(sender)]
- recipient_allreduce = allreduce_protocols[peers.index(recipient)]
- averaged_part = await recipient_allreduce.accumulate_part(
- source=sender, remote_part=sender_allreduce.local_tensor_parts[recipient])
- sender_allreduce.register_averaged_part(source=recipient, averaged_part=averaged_part)
- await asyncio.wait({_accumulate(sender, recipient) for sender in peers for recipient in peers
- if recipient != "colab"})
- reference_tensors = [
- sum(tensors_by_peer[peer][i] for peer in peers) / len(peers)
- for i in range(len(tensors_by_peer[peers[0]]))
- ]
- for peer, allreduce in zip(peers, allreduce_protocols):
- assert allreduce.future.done()
- averaged_tensors = await allreduce
- assert len(averaged_tensors) == len(reference_tensors)
- assert all(torch.allclose(our, ref, atol=1e-6, rtol=0)
- for our, ref in zip(averaged_tensors, reference_tensors))
- @pytest.mark.forked
- def test_partitioning():
- for _ in range(100):
- tensors = []
- for _ in range(random.randint(1, 5)):
- ndim = random.randint(0, 4)
- shape = torch.Size([random.randint(0, 16) for _ in range(ndim)])
- make_tensor = random.choice([torch.rand, torch.randn, torch.zeros, torch.ones])
- tensors.append(make_tensor(shape))
- total_size = sum(map(torch.Tensor.numel, tensors))
- if total_size == 0:
- continue
- num_chunks = random.randint(1, min(100, sum(x.numel() for x in tensors)))
- part_sizes = load_balance_peers(total_size, [None] * num_chunks)
- chunks = split_into_parts(tensors, part_sizes)
- assert len(chunks) == num_chunks
- shapes = [tensor.shape for tensor in tensors]
- restored = restore_from_parts(chunks, shapes)
- assert len(restored) == len(tensors)
- assert all(new.shape == old.shape for new, old in zip(restored, tensors))
- assert all(torch.allclose(new, old) for new, old in zip(restored, tensors))
- def get_cost(vector_size, partitions, throughputs):
- return max((vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(throughputs[i], 1e-9)
- for i in range(len(partitions)))
- def check_optimality(vector_size, throughputs, ref_partitions):
- partitions = list(load_balance_peers(vector_size, throughputs))
- assert get_cost(vector_size, partitions, throughputs) <= get_cost(vector_size, ref_partitions, throughputs)
- @pytest.mark.forked
- def test_load_balancing():
- check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
- check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
- check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
- check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
- check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
- check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
- assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
- assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
- assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
- assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
- assert load_balance_peers(100, (None, None)) == (50, 50)
- assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
- assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
- with pytest.raises(AssertionError):
- load_balance_peers(100, (0, 0, 0))
- for i in range(10):
- vector_size = np.random.randint(1, 1024 ** 3)
- num_peers = np.random.randint(1, 256)
- scale = 1e-9 + np.random.rand() * 1e5
- throughputs = np.random.rand(num_peers) * scale + 1e-6
- min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
- assignment = load_balance_peers(vector_size, throughputs, min_size)
- assert np.sum(assignment) == vector_size
- assert np.min(assignment) >= 0
- @pytest.mark.forked
- def test_too_few_peers():
- dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
- averagers = [hivemind.DecentralizedAverager(
- averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
- averaging_expiration=1, request_timeout=0.5,
- prefix='mygroup', initial_group_bits=bin(i)[2:].rjust(3, '0'), start=True)
- for i in range(4)]
- step_futures = [averager.step(wait=False) for averager in averagers]
- for future in step_futures:
- assert len(future.result()) == 2
- for averager in averagers:
- averager.shutdown()
- dht.shutdown()
- @pytest.mark.forked
- def test_overcrowded(num_peers=16):
- dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
- averagers = [hivemind.DecentralizedAverager(
- averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
- averaging_expiration=1, request_timeout=0.5,
- prefix='mygroup', initial_group_bits='', start=True)
- for _ in range(num_peers)]
- for t in range(5):
- step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
- assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
- for averager in averagers:
- averager.shutdown()
- dht.shutdown()
- @pytest.mark.forked
- def test_load_state_from_peers():
- num_calls = 0
- super_metadata = dict(x=123)
- super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
- class TestAverager(hivemind.DecentralizedAverager):
- def get_current_state(self):
- """
- Get current state and send it to a peer. executed in the host process. Meant to be overriden.
- :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
- """
- nonlocal num_calls, super_metadata, super_tensors
- num_calls += 1
- return super_metadata, super_tensors
- dht_root = hivemind.DHT(start=True)
- initial_peers = [f'{hivemind.LOCALHOST}:{dht_root.port}']
- dht1 = hivemind.DHT(initial_peers=initial_peers, start=True)
- averager1 = TestAverager([torch.randn(3), torch.rand(5)],
- dht=dht1, start=True,
- prefix='demo-run', target_group_size=2)
- dht2 = hivemind.DHT(initial_peers=initial_peers, start=True)
- dht2.get('demo-run.all_averagers')
- averager2 = TestAverager([torch.randn(3), torch.rand(5)],
- dht=dht2, start=True,
- prefix='demo-run', target_group_size=2)
- assert num_calls == 0
- got_metadata, got_tensors = averager2.load_state_from_peers()
- assert num_calls == 1
- assert got_metadata == super_metadata
- assert all(map(torch.allclose, got_tensors, super_tensors))
- super_metadata['y'] = 123
- super_tensors[1][2] = 9
- assert num_calls == 1
- assert got_metadata != super_metadata
- assert not all(map(torch.allclose, got_tensors, super_tensors))
- got_metadata, got_tensors = averager2.load_state_from_peers()
- assert num_calls == 2
- assert got_metadata == super_metadata
- assert all(map(torch.allclose, got_tensors, super_tensors))
- averager1.allow_state_sharing = False
- assert averager2.load_state_from_peers() is None
- averager1.allow_state_sharing = True
- got_metadata, got_tensors = averager2.load_state_from_peers()
- assert num_calls == 3
- assert got_metadata == super_metadata
- @pytest.mark.forked
- def test_getset_bits():
- dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
- averager = hivemind.DecentralizedAverager([torch.randn(3)], dht=dht, start=True,
- prefix='test_prefix', target_group_size=2)
- averager.set_group_bits('00101011101010')
- assert averager.get_group_bits() == '00101011101010'
- @pytest.mark.forked
- def test_training_averager(n_steps: int = 10, n_dims: int = 16):
- torch.manual_seed(42)
- dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
- common_kwargs = {'dht': dht, 'start': True, 'listen_on': '127.0.0.1:*',
- 'prefix': 'demo-run', 'target_group_size': 2}
- x1 = torch.randn(n_dims, requires_grad=True)
- opt1 = torch.optim.Adam([x1], lr=0.05)
- averager1 = hivemind.client.TrainingAverager(opt1, average_gradients=True, average_parameters=True,
- average_opt_statistics=["exp_avg_sq"], **common_kwargs)
- x2 = torch.randn(n_dims, requires_grad=True)
- opt2 = torch.optim.Adam([x2], lr=0.05)
- averager2 = hivemind.client.TrainingAverager(opt2, average_gradients=True, average_parameters=True,
- average_opt_statistics=["exp_avg_sq"], **common_kwargs)
- a = torch.ones(n_dims)
- for i in range(n_steps):
- opt1.zero_grad()
- opt2.zero_grad()
- (x1 - a).pow(2).sum().backward()
- (x2 - a).pow(2).sum().backward()
- opt1.step()
- opt2.step()
- with torch.no_grad():
- x_avg = 0.5 * (x1 + x2)
- grad_avg = 0.5 * (x1.grad + x2.grad)
- stats_avg = 0.5 * (opt1.state[x1]["exp_avg_sq"] + opt2.state[x2]["exp_avg_sq"])
- # we set wait=False in order to prevent deadlock, when averager1 locks and waits for averager2
- f1 = averager1.step(wait=False)
- f2 = averager2.step(wait=False)
- f1.result()
- f2.result()
- assert torch.allclose(x1, x_avg)
- assert torch.allclose(x2, x_avg)
- assert torch.allclose(x1.grad, grad_avg)
- assert torch.allclose(x2.grad, grad_avg)
- assert torch.allclose(opt1.state[x1]["exp_avg_sq"], stats_avg)
- assert torch.allclose(opt2.state[x2]["exp_avg_sq"], stats_avg)
|