test_averaging.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. import asyncio
  2. import random
  3. import numpy as np
  4. import torch
  5. import pytest
  6. import hivemind
  7. from hivemind.client.averaging.allreduce import AllReduceProtocol, split_into_parts, restore_from_parts, AveragingMode
  8. from hivemind.client.averaging.load_balancing import load_balance_peers
  9. from hivemind.client.averaging.key_manager import GroupKeyManager
  10. from hivemind.utils import Endpoint
  11. @pytest.mark.forked
  12. @pytest.mark.asyncio
  13. async def test_key_manager():
  14. key_manager = GroupKeyManager(hivemind.DHT(start=True), endpoint='localhvost',
  15. prefix='test_averaging', initial_group_bits='10110',
  16. target_group_size=2)
  17. t = hivemind.get_dht_time()
  18. key = key_manager.current_key
  19. await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 60)
  20. await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61)
  21. q1 = await key_manager.get_averagers(key, only_active=True)
  22. await key_manager.declare_averager(key, 'localhvost', expiration_time=t + 66)
  23. q2 = await key_manager.get_averagers(key, only_active=True)
  24. await key_manager.declare_averager(key, 'localhvost2', expiration_time=t + 61, looking_for_group=False)
  25. q3 = await key_manager.get_averagers(key, only_active=True)
  26. q4 = await key_manager.get_averagers(key, only_active=False)
  27. q5 = await key_manager.get_averagers('nonexistent_key.0b0101', only_active=False)
  28. assert len(q1) == 2 and ('localhvost', t + 60) in q1 and ('localhvost2', t + 61) in q1
  29. assert len(q2) == 2 and ('localhvost', t + 66) in q2 and ('localhvost2', t + 61) in q2
  30. assert len(q3) == 1 and ('localhvost', t + 66) in q3
  31. assert len(q4) == 2 and ('localhvost', t + 66) in q4 and ('localhvost2', t + 61) in q2
  32. assert len(q5) == 0
  33. def _test_allreduce_once(n_clients, n_aux):
  34. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  35. n_peers = 4
  36. modes = [AveragingMode.CLIENT] * n_clients + [AveragingMode.AUX] * n_aux + [AveragingMode.NODE] * (n_peers - n_clients - n_aux)
  37. random.shuffle(modes)
  38. tensors1 = [torch.randn(123), torch.zeros(3)]
  39. tensors2 = [torch.rand(123), torch.ones(3)]
  40. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  41. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  42. peer_tensors = [tensors1, tensors2, tensors3, tensors4]
  43. reference = [sum(tensors[i] for tensors, mode in zip(peer_tensors, modes)
  44. if mode != AveragingMode.AUX) / max(1, n_peers - n_aux) for i in range(len(tensors1))]
  45. averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
  46. prefix='mygroup', listen=mode != AveragingMode.CLIENT, listen_on='127.0.0.1:*',
  47. auxiliary=mode == AveragingMode.AUX, start=True)
  48. for tensors, mode in zip(peer_tensors, modes)]
  49. futures = []
  50. for averager in averagers:
  51. futures.append(averager.step(wait=False))
  52. for future in futures:
  53. result = future.result()
  54. for averager in averagers:
  55. assert averager.endpoint in result
  56. for averager in averagers:
  57. if averager.mode != AveragingMode.AUX:
  58. with averager.get_tensors() as averaged_tensors:
  59. for ref, our in zip(reference, averaged_tensors):
  60. assert torch.allclose(ref, our, atol=1e-6)
  61. for averager in averagers:
  62. averager.shutdown()
  63. dht.shutdown()
  64. @pytest.mark.forked
  65. @pytest.mark.parametrize("n_clients", [0, 1, 2])
  66. @pytest.mark.parametrize("n_aux", [0, 1, 2])
  67. def test_allreduce_once(n_clients, n_aux):
  68. _test_allreduce_once(n_clients, n_aux)
  69. @pytest.mark.forked
  70. @pytest.mark.parametrize("n_clients, n_aux", [(0, 4), (1, 3), (0, 3)])
  71. def test_allreduce_once_edge_cases(n_clients, n_aux):
  72. _test_allreduce_once(n_clients, n_aux)
  73. @pytest.mark.forked
  74. def test_allreduce_weighted(n_client_mode_peers: int = 2):
  75. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  76. n_peers = 4
  77. should_listen = [False] * n_client_mode_peers + [True] * (n_peers - n_client_mode_peers)
  78. random.shuffle(should_listen)
  79. tensors1 = [torch.randn(123), torch.zeros(3)]
  80. tensors2 = [torch.rand(123), torch.ones(3)]
  81. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  82. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  83. averagers = [hivemind.DecentralizedAverager(tensors, dht=dht, target_group_size=4, averaging_expiration=15,
  84. prefix='mygroup', listen=listen, listen_on='127.0.0.1:*',
  85. start=True)
  86. for tensors, listen in zip([tensors1, tensors2, tensors3, tensors4], should_listen)]
  87. weights = list(map(float, np.random.rand(len(averagers)) * 10 + 0.01))
  88. reference = [(tensors1[i] * weights[0] + tensors2[i] * weights[1] + tensors3[i] * weights[2]
  89. + tensors4[i] * weights[3]) / sum(weights) for i in range(len(tensors1))]
  90. futures = []
  91. for averager, weight in zip(averagers, weights):
  92. futures.append(averager.step(weight=weight, wait=False))
  93. for future in futures:
  94. future.result()
  95. for future, averager in zip(futures, averagers):
  96. with averager.get_tensors() as averaged_tensors:
  97. for ref, our in zip(reference, averaged_tensors):
  98. assert torch.allclose(ref, our, atol=1e-6)
  99. for averager in averagers:
  100. averager.shutdown()
  101. dht.shutdown()
  102. def compute_mean_std(averagers, unbiased=True):
  103. results = []
  104. for averager in averagers:
  105. with averager.get_tensors() as tensors:
  106. results.append([tensor.clone() for tensor in tensors])
  107. results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
  108. means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
  109. stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
  110. return means, stds
  111. @pytest.mark.forked
  112. def test_allreduce_grid():
  113. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  114. averagers = [hivemind.DecentralizedAverager(
  115. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  116. prefix='mygroup', initial_group_bits=bin(i // 2)[2:].rjust(2, '0'), start=True)
  117. for i in range(8)]
  118. [means0], [stds0] = compute_mean_std(averagers)
  119. assert not torch.allclose(stds0, torch.zeros_like(stds0))
  120. prev_means, prev_stds = means0, stds0
  121. for i in range(5):
  122. step_futures = [averager.step(wait=False) for averager in averagers]
  123. groups = [future.result() for future in step_futures]
  124. [means], [stds] = compute_mean_std(averagers)
  125. assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
  126. assert all(len(group) == 2 for group in groups)
  127. if i <= 2:
  128. assert torch.all(torch.le(stds, prev_stds))
  129. else:
  130. assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
  131. for averager in averagers:
  132. averager.shutdown()
  133. dht.shutdown()
  134. @pytest.mark.forked
  135. def test_allgather():
  136. dht = hivemind.DHT(start=True, endpoint=f'{hivemind.LOCALHOST}:*')
  137. averagers = [hivemind.DecentralizedAverager([torch.ones(1)], dht=dht, target_group_size=4, averaging_expiration=15,
  138. prefix='mygroup', initial_group_bits='000', listen_on='127.0.0.1:*',
  139. start=True)
  140. for _ in range(8)]
  141. futures = []
  142. for i, averager in enumerate(averagers):
  143. futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo='bar')))
  144. assert len(set(repr(sorted(future.result())) for future in futures)) == 2
  145. reference_metadata = {averager.endpoint: dict(batch_size=123 + i, foo='bar')
  146. for i, averager in enumerate(averagers)}
  147. for future in futures:
  148. gathered = future.result()
  149. assert len(gathered) == 4
  150. for endpoint in gathered:
  151. assert gathered[endpoint] == reference_metadata[endpoint]
  152. for averager in averagers:
  153. averager.shutdown()
  154. dht.shutdown()
  155. @pytest.mark.forked
  156. @pytest.mark.asyncio
  157. async def test_allreduce_protocol():
  158. """ Run group allreduce protocol manually without grpc, see if the internal logic is working as intended """
  159. peers = "alice", "bob", "carol", "colab"
  160. tensors_by_peer = {peer: [torch.randn(3, 128), torch.rand(32), torch.tensor(i, dtype=torch.float32)]
  161. for i, peer in enumerate(peers)}
  162. group_id = random.getrandbits(160).to_bytes(length=20, byteorder='big')
  163. allreduce_protocols = [AllReduceProtocol(
  164. group_id=group_id, endpoint=peer, tensors=tensors_by_peer[peer],
  165. ordered_group_endpoints=peers, part_sizes=(150, 200, 67, 0))
  166. for peer in peers]
  167. async def _accumulate(sender: Endpoint, recipient: Endpoint):
  168. sender_allreduce = allreduce_protocols[peers.index(sender)]
  169. recipient_allreduce = allreduce_protocols[peers.index(recipient)]
  170. averaged_part = await recipient_allreduce.accumulate_part(
  171. source=sender, remote_part=sender_allreduce.local_tensor_parts[recipient])
  172. sender_allreduce.register_averaged_part(source=recipient, averaged_part=averaged_part)
  173. await asyncio.wait({_accumulate(sender, recipient) for sender in peers for recipient in peers
  174. if recipient != "colab"})
  175. reference_tensors = [
  176. sum(tensors_by_peer[peer][i] for peer in peers) / len(peers)
  177. for i in range(len(tensors_by_peer[peers[0]]))
  178. ]
  179. for peer, allreduce in zip(peers, allreduce_protocols):
  180. assert allreduce.future.done()
  181. averaged_tensors = await allreduce
  182. assert len(averaged_tensors) == len(reference_tensors)
  183. assert all(torch.allclose(our, ref, atol=1e-6, rtol=0)
  184. for our, ref in zip(averaged_tensors, reference_tensors))
  185. @pytest.mark.forked
  186. def test_partitioning():
  187. for _ in range(100):
  188. tensors = []
  189. for _ in range(random.randint(1, 5)):
  190. ndim = random.randint(0, 4)
  191. shape = torch.Size([random.randint(0, 16) for _ in range(ndim)])
  192. make_tensor = random.choice([torch.rand, torch.randn, torch.zeros, torch.ones])
  193. tensors.append(make_tensor(shape))
  194. total_size = sum(map(torch.Tensor.numel, tensors))
  195. if total_size == 0:
  196. continue
  197. num_chunks = random.randint(1, min(100, sum(x.numel() for x in tensors)))
  198. part_sizes = load_balance_peers(total_size, [None] * num_chunks)
  199. chunks = split_into_parts(tensors, part_sizes)
  200. assert len(chunks) == num_chunks
  201. shapes = [tensor.shape for tensor in tensors]
  202. restored = restore_from_parts(chunks, shapes)
  203. assert len(restored) == len(tensors)
  204. assert all(new.shape == old.shape for new, old in zip(restored, tensors))
  205. assert all(torch.allclose(new, old) for new, old in zip(restored, tensors))
  206. def get_cost(vector_size, partitions, throughputs):
  207. return max((vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(throughputs[i], 1e-9)
  208. for i in range(len(partitions)))
  209. def check_optimality(vector_size, throughputs, ref_partitions):
  210. partitions = list(load_balance_peers(vector_size, throughputs))
  211. assert get_cost(vector_size, partitions, throughputs) <= get_cost(vector_size, ref_partitions, throughputs)
  212. @pytest.mark.forked
  213. def test_load_balancing():
  214. check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
  215. check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
  216. check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
  217. check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
  218. check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
  219. check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
  220. assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
  221. assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
  222. assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
  223. assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
  224. assert load_balance_peers(100, (None, None)) == (50, 50)
  225. assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
  226. assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
  227. with pytest.raises(AssertionError):
  228. load_balance_peers(100, (0, 0, 0))
  229. for i in range(10):
  230. vector_size = np.random.randint(1, 1024 ** 3)
  231. num_peers = np.random.randint(1, 256)
  232. scale = 1e-9 + np.random.rand() * 1e5
  233. throughputs = np.random.rand(num_peers) * scale + 1e-6
  234. min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
  235. assignment = load_balance_peers(vector_size, throughputs, min_size)
  236. assert np.sum(assignment) == vector_size
  237. assert np.min(assignment) >= 0
  238. @pytest.mark.forked
  239. def test_too_few_peers():
  240. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  241. averagers = [hivemind.DecentralizedAverager(
  242. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  243. averaging_expiration=1, request_timeout=0.5,
  244. prefix='mygroup', initial_group_bits=bin(i)[2:].rjust(3, '0'), start=True)
  245. for i in range(4)]
  246. step_futures = [averager.step(wait=False) for averager in averagers]
  247. for future in step_futures:
  248. assert len(future.result()) == 2
  249. for averager in averagers:
  250. averager.shutdown()
  251. dht.shutdown()
  252. @pytest.mark.forked
  253. def test_overcrowded(num_peers=16):
  254. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  255. averagers = [hivemind.DecentralizedAverager(
  256. averaged_tensors=[torch.randn(3)], dht=dht, target_group_size=2,
  257. averaging_expiration=1, request_timeout=0.5,
  258. prefix='mygroup', initial_group_bits='', start=True)
  259. for _ in range(num_peers)]
  260. for t in range(5):
  261. step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
  262. assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
  263. for averager in averagers:
  264. averager.shutdown()
  265. dht.shutdown()
  266. @pytest.mark.forked
  267. def test_load_state_from_peers():
  268. num_calls = 0
  269. super_metadata = dict(x=123)
  270. super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
  271. class TestAverager(hivemind.DecentralizedAverager):
  272. def get_current_state(self):
  273. """
  274. Get current state and send it to a peer. executed in the host process. Meant to be overriden.
  275. :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
  276. """
  277. nonlocal num_calls, super_metadata, super_tensors
  278. num_calls += 1
  279. return super_metadata, super_tensors
  280. dht_root = hivemind.DHT(start=True)
  281. initial_peers = [f'{hivemind.LOCALHOST}:{dht_root.port}']
  282. dht1 = hivemind.DHT(initial_peers=initial_peers, start=True)
  283. averager1 = TestAverager([torch.randn(3), torch.rand(5)],
  284. dht=dht1, start=True,
  285. prefix='demo-run', target_group_size=2)
  286. dht2 = hivemind.DHT(initial_peers=initial_peers, start=True)
  287. dht2.get('demo-run.all_averagers')
  288. averager2 = TestAverager([torch.randn(3), torch.rand(5)],
  289. dht=dht2, start=True,
  290. prefix='demo-run', target_group_size=2)
  291. assert num_calls == 0
  292. got_metadata, got_tensors = averager2.load_state_from_peers()
  293. assert num_calls == 1
  294. assert got_metadata == super_metadata
  295. assert all(map(torch.allclose, got_tensors, super_tensors))
  296. super_metadata['y'] = 123
  297. super_tensors[1][2] = 9
  298. assert num_calls == 1
  299. assert got_metadata != super_metadata
  300. assert not all(map(torch.allclose, got_tensors, super_tensors))
  301. got_metadata, got_tensors = averager2.load_state_from_peers()
  302. assert num_calls == 2
  303. assert got_metadata == super_metadata
  304. assert all(map(torch.allclose, got_tensors, super_tensors))
  305. averager1.allow_state_sharing = False
  306. assert averager2.load_state_from_peers() is None
  307. averager1.allow_state_sharing = True
  308. got_metadata, got_tensors = averager2.load_state_from_peers()
  309. assert num_calls == 3
  310. assert got_metadata == super_metadata
  311. @pytest.mark.forked
  312. def test_getset_bits():
  313. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  314. averager = hivemind.DecentralizedAverager([torch.randn(3)], dht=dht, start=True,
  315. prefix='test_prefix', target_group_size=2)
  316. averager.set_group_bits('00101011101010')
  317. assert averager.get_group_bits() == '00101011101010'
  318. @pytest.mark.forked
  319. def test_training_averager(n_steps: int = 10, n_dims: int = 16):
  320. torch.manual_seed(42)
  321. dht = hivemind.DHT(start=True, endpoint='127.0.0.1:*')
  322. common_kwargs = {'dht': dht, 'start': True, 'listen_on': '127.0.0.1:*',
  323. 'prefix': 'demo-run', 'target_group_size': 2}
  324. x1 = torch.randn(n_dims, requires_grad=True)
  325. opt1 = torch.optim.Adam([x1], lr=0.05)
  326. averager1 = hivemind.client.TrainingAverager(opt1, average_gradients=True, average_parameters=True,
  327. average_opt_statistics=["exp_avg_sq"], **common_kwargs)
  328. x2 = torch.randn(n_dims, requires_grad=True)
  329. opt2 = torch.optim.Adam([x2], lr=0.05)
  330. averager2 = hivemind.client.TrainingAverager(opt2, average_gradients=True, average_parameters=True,
  331. average_opt_statistics=["exp_avg_sq"], **common_kwargs)
  332. a = torch.ones(n_dims)
  333. for i in range(n_steps):
  334. opt1.zero_grad()
  335. opt2.zero_grad()
  336. (x1 - a).pow(2).sum().backward()
  337. (x2 - a).pow(2).sum().backward()
  338. opt1.step()
  339. opt2.step()
  340. with torch.no_grad():
  341. x_avg = 0.5 * (x1 + x2)
  342. grad_avg = 0.5 * (x1.grad + x2.grad)
  343. stats_avg = 0.5 * (opt1.state[x1]["exp_avg_sq"] + opt2.state[x2]["exp_avg_sq"])
  344. # we set wait=False in order to prevent deadlock, when averager1 locks and waits for averager2
  345. f1 = averager1.step(wait=False)
  346. f2 = averager2.step(wait=False)
  347. f1.result()
  348. f2.result()
  349. assert torch.allclose(x1, x_avg)
  350. assert torch.allclose(x2, x_avg)
  351. assert torch.allclose(x1.grad, grad_avg)
  352. assert torch.allclose(x2.grad, grad_avg)
  353. assert torch.allclose(opt1.state[x1]["exp_avg_sq"], stats_avg)
  354. assert torch.allclose(opt2.state[x2]["exp_avg_sq"], stats_avg)