run_server.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import torch
  2. import tesseract
  3. from .layers import name_to_block
  4. from contextlib import contextmanager
  5. @contextmanager
  6. def background_server(host='0.0.0.0', port=None, num_experts=1, expert_cls='ffn', hidden_dim=1024, num_handlers=None,
  7. expert_prefix='expert.', expert_offset=0, max_batch_size=16384, device=None, no_optimizer=False,
  8. no_network=False, initial_peers=(), network_port=None, verbose=False, **kwargs
  9. ) -> tesseract.TesseractServer:
  10. """ A context manager that creates server in a background thread, awaits .ready on entry and shutdowns on exit """
  11. if verbose and len(kwargs) == 0:
  12. print("Ignored kwargs:", kwargs)
  13. expert_cls in name_to_block
  14. num_handlers = num_handlers if num_handlers is not None else num_experts * 8
  15. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  16. # initialize network
  17. network = None
  18. if not no_network:
  19. initial_peers = eval(initial_peers)
  20. network = tesseract.TesseractNetwork(*initial_peers, port=network_port or tesseract.find_open_port(), start=True)
  21. if verbose:
  22. print("Parsed initial peers:", initial_peers)
  23. print(f"Running network node on port {network.port}")
  24. # initialize experts
  25. experts = {}
  26. for i in range(num_experts):
  27. expert = torch.jit.script(name_to_block[expert_cls](hidden_dim))
  28. opt = torch.optim.SGD(expert.parameters(), 0.0) if no_optimizer else torch.optim.Adam(expert.parameters())
  29. expert_uid = f'{expert_prefix}.{i + expert_offset}'
  30. experts[expert_uid] = tesseract.ExpertBackend(name=expert_uid, expert=expert, opt=opt,
  31. args_schema=(tesseract.BatchTensorProto(hidden_dim),),
  32. outputs_schema=tesseract.BatchTensorProto(hidden_dim),
  33. max_batch_size=max_batch_size,
  34. )
  35. # start server
  36. server = tesseract.TesseractServer(
  37. network, experts, addr=host, port=port or tesseract.find_open_port(),
  38. conn_handler_processes=num_handlers, device=device)
  39. try:
  40. server.run_in_background(await_ready=True)
  41. if verbose:
  42. print(f"Running server at {server.addr}:{server.port}")
  43. print(f"Active experts of type {expert_cls}: {list(experts.keys())}")
  44. yield server
  45. finally:
  46. if verbose:
  47. print("Shutting down server...")
  48. server.shutdown()
  49. if verbose:
  50. print("Server shut down successfully.")