123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- #!/usr/bin/env python
- from dataclasses import dataclass, field, asdict
- import subprocess
- import time
- from typing import Optional
- import torch
- from torch_optimizer import Lamb
- from transformers import AlbertForPreTraining, AlbertConfig, HfArgumentParser
- import wandb
- from whatsmyip.providers import GoogleDnsProvider
- from whatsmyip.ip import get_ip
- from arguments import BaseTrainingArguments, CollaborativeOptimizerArguments, AveragerArguments
- import hivemind
- from hivemind.utils.logging import get_logger
- import metrics_utils
- logger = get_logger(__name__)
- @dataclass
- class CoordinatorArguments(BaseTrainingArguments):
- """
- Note: You might want to have several initial peers so that if one dies,
- new workers still can join the collaboration via alive initial peers' addresses.
- Specify initial_peers argument for that purpose
- """
- address: Optional[str] = field(
- default=None,
- metadata={"help": "This machine's network address. Use public IP for global experiments, "
- "local address for private runs"}
- )
- refresh_period: float = field(
- default=30,
- metadata={"help": "Coordinator will fetch keys from DHT once in this many seconds"}
- )
- wandb_project: Optional[str] = field(
- default=None,
- metadata={"help": "Learning curves will be published there"}
- )
- save_checkpoint_step_interval: int = field(
- default=5,
- metadata={"help": "Coordinator will load and save state from peers once every that many steps"}
- )
- model_config_path: str = field(
- default='https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json',
- metadata={"help": "Path to the model config"}
- )
- repo_path: Optional[str] = field(
- default=None,
- metadata={"help": "Path to HuggingFace repo in which coordinator will upload the model and optimizer states"}
- )
- upload_interval: Optional[float] = field(
- default=None,
- metadata={"help": "Coordinator will upload model once in this many seconds"}
- )
- class CheckpointHandler:
- def __init__(self, coordinator_args: CoordinatorArguments, collab_optimizer_args: CollaborativeOptimizerArguments,
- averager_args: AveragerArguments, dht: hivemind.DHT):
- self.save_checkpoint_step_interval = coordinator_args.save_checkpoint_step_interval
- self.repo_path = coordinator_args.repo_path
- self.upload_interval = coordinator_args.upload_interval
- self.previous_step = -1
- config = AlbertConfig.from_pretrained(coordinator_args.model_config_path)
- self.model = AlbertForPreTraining(config)
- no_decay = ["bias", "LayerNorm.weight"]
- optimizer_grouped_parameters = [
- {
- "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
- "weight_decay": 0.01,
- },
- {
- "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
- "weight_decay": 0.0,
- },
- ]
- opt = Lamb(
- optimizer_grouped_parameters,
- lr=0.00176, weight_decay=0.01, clamp_value=10000.0, debias=True,
- )
- adjusted_target_batch_size = collab_optimizer_args.target_batch_size - collab_optimizer_args.batch_size_lead
- self.collaborative_optimizer = hivemind.CollaborativeOptimizer(
- opt=opt, dht=dht, prefix=experiment_prefix,
- compression_type=hivemind.utils.CompressionType.Value(collab_optimizer_args.compression),
- throughput=collab_optimizer_args.bandwidth,
- target_batch_size=adjusted_target_batch_size, client_mode=collab_optimizer_args.client_mode,
- verbose=True, start=True, **asdict(averager_args)
- )
- self.previous_timestamp = time.time()
- def is_time_to_save_state(self, cur_step):
- if self.save_checkpoint_step_interval is None:
- return False
- elif cur_step - self.previous_step >= self.save_checkpoint_step_interval:
- return True
- else:
- return False
- def save_state(self, cur_step):
- self.collaborative_optimizer.load_state_from_peers()
- self.previous_step = cur_step
- def is_time_to_upload(self):
- if self.repo_path is None:
- return False
- elif time.time() - self.previous_timestamp >= self.upload_interval:
- return True
- else:
- return False
- def upload_checkpoint(self, current_loss):
- self.model.save_pretrained(self.repo_path)
- torch.save(self.collaborative_optimizer.opt.state_dict(), f"{self.repo_path}/optimizer_state.pt")
- self.previous_timestamp = time.time()
- try:
- subprocess.run("git add --all", shell=True, check=True, cwd=self.repo_path)
- current_step = self.collaborative_optimizer.collaboration_state.optimizer_step
- subprocess.run(f"git commit -m 'Step {current_step}, loss {current_loss:.3f}'",
- shell=True, check=True, cwd=self.repo_path)
- subprocess.run("git push", shell=True, check=True, cwd=self.repo_path)
- except subprocess.CalledProcessError as e:
- logger.warning("Error while uploading model:", e.output)
- if __name__ == '__main__':
- parser = HfArgumentParser((CoordinatorArguments, CollaborativeOptimizerArguments, AveragerArguments))
- coordinator_args, collab_optimizer_args, averager_args = parser.parse_args_into_dataclasses()
- if coordinator_args.address is None:
- logger.warning("No address specified. Attempting to infer address from DNS.")
- coordinator_args.address = get_ip(GoogleDnsProvider)
- experiment_prefix = coordinator_args.experiment_prefix
- validators, local_public_key = metrics_utils.make_validators(experiment_prefix)
- dht = hivemind.DHT(start=True, listen_on=coordinator_args.dht_listen_on,
- endpoint=f"{coordinator_args.address}:*", initial_peers=coordinator_args.initial_peers,
- record_validators=validators)
- logger.info(f"Running DHT root at {coordinator_args.address}:{dht.port}")
- if coordinator_args.wandb_project is not None:
- wandb.init(project=coordinator_args.wandb_project)
- current_step = 0
- checkpoint_handler = CheckpointHandler(coordinator_args, collab_optimizer_args, averager_args, dht)
- while True:
- metrics_dict = dht.get(experiment_prefix + '_metrics', latest=True)
- if metrics_dict is not None:
- metrics_dict = metrics_dict.value
- metrics = [metrics_utils.LocalMetrics.parse_obj(metrics_dict[peer].value)
- for peer in metrics_dict]
- latest_step = max(item.step for item in metrics)
- if latest_step != current_step:
- logger.debug(f"Got metrics from {len(metrics)} peers")
- for i, metrics_for_peer in enumerate(metrics):
- logger.debug(f"{i} peer {metrics_for_peer}")
- current_step = latest_step
- alive_peers = 0
- num_batches = 0
- sum_loss = 0
- num_samples = 0
- sum_perf = 0
- sum_mini_steps = 0
- for item in metrics:
- sum_loss += item.loss
- alive_peers += 1
- sum_perf += item.samples_per_second
- num_samples += item.samples_accumulated
- sum_mini_steps += item.mini_steps
- current_loss = sum_loss / sum_mini_steps
- if coordinator_args.wandb_project is not None:
- wandb.log({
- "loss": current_loss,
- "alive peers": alive_peers,
- "samples": num_samples,
- "performance": sum_perf,
- "step": latest_step
- })
- if checkpoint_handler.is_time_to_save_state(current_step):
- checkpoint_handler.save_state(current_step)
- if checkpoint_handler.is_time_to_upload():
- checkpoint_handler.upload_checkpoint(current_loss)
- logger.info(f"Step #{current_step}\tloss = {current_loss:.5f}")
- logger.debug("Peer is still alive...")
- time.sleep(coordinator_args.refresh_period)
|