12345678910111213141516171819202122232425262728293031323334353637383940 |
- #%env CUDA_VISIBLE_DEVICES=
- import argparse
- from typing import Optional
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from hivemind import RemoteExpert, find_open_port
- from test_utils.run_server import background_server
- from sklearn.datasets import load_digits
- def test_training(port: Optional[int] = None, max_steps: int = 100, threshold: float = 0.9):
- if port is None:
- port = find_open_port()
- dataset = load_digits()
- X_train, y_train = torch.tensor(dataset['data'], dtype=torch.float), torch.tensor(dataset['target'])
- with background_server(num_experts=2, device='cpu', port=port, hidden_dim=64):
- expert1 = RemoteExpert('expert.0', host='127.0.0.1', port=port)
- expert2 = RemoteExpert('expert.1', host='127.0.0.1', port=port)
- model = nn.Sequential(expert2, nn.Tanh(), expert1, nn.Linear(64, 10))
- opt = torch.optim.SGD(model.parameters(), lr=0.05)
- for step in range(max_steps):
- opt.zero_grad()
- outputs = model(X_train)
- loss = F.cross_entropy(outputs, y_train)
- loss.backward()
- opt.step()
- accuracy = (outputs.argmax(dim=1) == y_train).numpy().mean()
- if accuracy >= threshold:
- break
- assert accuracy >= threshold, f"too small accuracy: {accuracy}"
|