run_server.py 4.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. from functools import partial
  2. from pathlib import Path
  3. import configargparse
  4. import torch
  5. from hivemind.proto.runtime_pb2 import CompressionType
  6. from hivemind.server import Server
  7. from hivemind.utils.threading import increase_file_limit
  8. from hivemind.utils.logging import get_logger
  9. logger = get_logger(__name__)
  10. def main():
  11. # fmt:off
  12. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  13. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  14. parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
  15. help="'localhost' for local connections only, '0.0.0.0' for ipv4 '[::]' for ipv6")
  16. parser.add_argument('--num_experts', type=int, default=None, required=False, help="The number of experts to serve")
  17. parser.add_argument('--expert_pattern', type=str, default=None, required=False,
  18. help='all expert uids will follow this pattern, e.g. "myexpert.[0:256].[0:1024]" will sample random expert uids'
  19. ' between myexpert.0.0 and myexpert.255.1023 . Use either num_experts and this or expert_uids')
  20. parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
  21. help="specify the exact list of expert uids to create. Use either this or num_experts"
  22. " and expert_pattern, not both")
  23. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  24. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
  25. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  26. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  27. help='server will use this many processes to handle incoming requests')
  28. parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
  29. help='The total number of examples in the same batch will not exceed this value')
  30. parser.add_argument('--device', type=str, default=None, required=False,
  31. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  32. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  33. parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
  34. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[],
  35. help='one or more peers that can welcome you to the dht, e.g. 1.2.3.4:1337 192.132.231.4:4321')
  36. parser.add_argument('--dht_port', type=int, default=None, required=False, help='DHT node will listen on this port')
  37. parser.add_argument('--increase_file_limit', action='store_true',
  38. help='On *nix, this will increase the max number of processes '
  39. 'a server can spawn before hitting "Too many open files"; Use at your own risk.')
  40. parser.add_argument('--compression', type=str, default='NONE', required=False, help='Tensor compression '
  41. 'parameter for grpc. Can be NONE, MEANSTD or FLOAT16')
  42. parser.add_argument('--checkpoint_dir', type=Path, required=False, help='Directory to store expert checkpoints')
  43. parser.add_argument('--load_experts', action='store_true', help='Load experts from the checkpoint directory')
  44. # fmt:on
  45. args = vars(parser.parse_args())
  46. args.pop('config', None)
  47. optimizer = args.pop('optimizer')
  48. if optimizer == 'adam':
  49. optim_cls = torch.optim.Adam
  50. elif optimizer == 'sgd':
  51. optim_cls = partial(torch.optim.SGD, lr=0.01)
  52. elif optimizer == 'none':
  53. optim_cls = None
  54. else:
  55. raise ValueError("optim_cls must be adam, sgd or none")
  56. if args.pop('increase_file_limit'):
  57. increase_file_limit()
  58. compression_type = args.pop("compression")
  59. if compression_type == "MEANSTD":
  60. compression = CompressionType.MEANSTD_LAST_AXIS_FLOAT16
  61. else:
  62. compression = getattr(CompressionType, compression_type)
  63. server = Server.create(**args, optim_cls=optim_cls, start=True, compression=compression)
  64. try:
  65. server.join()
  66. except KeyboardInterrupt:
  67. logger.info("Caught KeyboardInterrupt, shutting down")
  68. finally:
  69. server.shutdown()
  70. if __name__ == '__main__':
  71. main()