run_server.py 4.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. from functools import partial
  2. import configargparse
  3. import resource
  4. import torch
  5. from hivemind.server import Server
  6. from hivemind.utils.threading import increase_file_limit
  7. from hivemind.proto.runtime_pb2 import CompressionType
  8. def main():
  9. # fmt:off
  10. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  11. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  12. parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
  13. help="'localhost' for local connections only, '0.0.0.0' for ipv4 '::' for ipv6")
  14. parser.add_argument('--num_experts', type=int, default=None, required=False, help="The number of experts to serve")
  15. parser.add_argument('--expert_pattern', type=str, default=None, required=False,
  16. help='all expert uids will follow this pattern, e.g. "myexpert.[0:256].[0:1024]" will sample random expert uids'
  17. ' between myexpert.0.0 and myexpert.255.1023 . Use either num_experts and this or expert_uids')
  18. parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
  19. help="specify the exact list of expert uids to create. Use either this or num_experts"
  20. " and expert_pattern, not both")
  21. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  22. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
  23. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  24. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  25. help='server will use this many processes to handle incoming requests')
  26. parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
  27. help='The total number of examples in the same batch will not exceed this value')
  28. parser.add_argument('--device', type=str, default=None, required=False,
  29. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  30. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  31. parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
  32. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[],
  33. help='one or more peers that can welcome you to the dht, e.g. 1.2.3.4:1337 192.132.231.4:4321')
  34. parser.add_argument('--dht_port', type=int, default=None, required=False, help='DHT node will listen on this port')
  35. parser.add_argument('--increase_file_limit', action='store_true',
  36. help='On *nix, this will increase the max number of processes '
  37. 'a server can spawn before hitting "Too many open files"; Use at your own risk.')
  38. parser.add_argument('--compression', type=str, default='NONE', required=False, help='Tensor compression '
  39. 'parameter for grpc. Can be NONE, MEANSTD or FLOAT16')
  40. # fmt:on
  41. args = vars(parser.parse_args())
  42. args.pop('config', None)
  43. optimizer = args.pop('optimizer')
  44. if optimizer == 'adam':
  45. optim_cls = torch.optim.Adam
  46. elif optimizer == 'sgd':
  47. optim_cls = partial(torch.optim.SGD, lr=0.01)
  48. elif optimizer == 'none':
  49. optim_cls = None
  50. else:
  51. raise ValueError("optim_cls must be adam, sgd or none")
  52. if args.pop('increase_file_limit'):
  53. increase_file_limit()
  54. compression_name = args.pop("compression")
  55. compression = CompressionType.NONE
  56. if compression_name == "MEANSTD":
  57. compression = CompressionType.MEANSTD_LAST_AXIS_FLOAT16
  58. elif compression_name == "FLOAT16":
  59. compression = CompressionType.FLOAT16
  60. else:
  61. compression = getattr(CompressionType, compression_name)
  62. try:
  63. server = Server.create(**args, optim_cls=optim_cls, start=True, verbose=True, compression=compression)
  64. server.join()
  65. finally:
  66. server.shutdown()
  67. if __name__ == '__main__':
  68. main()