test_averaging.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. import asyncio
  2. import random
  3. import time
  4. import numpy as np
  5. import pytest
  6. import torch
  7. import hivemind
  8. import hivemind.averaging.averager
  9. from conftest import cleanup_children
  10. from hivemind.averaging.allreduce import AveragingMode
  11. from hivemind.averaging.key_manager import GroupKeyManager
  12. from hivemind.averaging.load_balancing import load_balance_peers
  13. from hivemind.p2p import PeerID
  14. from hivemind.proto.runtime_pb2 import CompressionType
  15. from test_utils.dht_swarms import launch_dht_instances
  16. @pytest.mark.forked
  17. @pytest.mark.asyncio
  18. async def test_key_manager():
  19. dht = hivemind.DHT(start=True)
  20. key_manager = GroupKeyManager(
  21. dht,
  22. prefix="test_averaging",
  23. initial_group_bits="10110",
  24. target_group_size=2,
  25. )
  26. alice = dht.peer_id
  27. bob = PeerID(b"bob")
  28. t = hivemind.get_dht_time()
  29. key = key_manager.current_key
  30. await key_manager.declare_averager(key, alice, expiration_time=t + 60)
  31. await key_manager.declare_averager(key, bob, expiration_time=t + 61)
  32. q1 = await key_manager.get_averagers(key, only_active=True)
  33. await key_manager.declare_averager(key, alice, expiration_time=t + 66)
  34. q2 = await key_manager.get_averagers(key, only_active=True)
  35. await key_manager.declare_averager(key, bob, expiration_time=t + 61, looking_for_group=False)
  36. q3 = await key_manager.get_averagers(key, only_active=True)
  37. q4 = await key_manager.get_averagers(key, only_active=False)
  38. q5 = await key_manager.get_averagers("nonexistent_key.0b0101", only_active=False)
  39. assert len(q1) == 2 and (alice, t + 60) in q1 and (bob, t + 61) in q1
  40. assert len(q2) == 2 and (alice, t + 66) in q2 and (bob, t + 61) in q2
  41. assert len(q3) == 1 and (alice, t + 66) in q3
  42. assert len(q4) == 2 and (alice, t + 66) in q4 and (bob, t + 61) in q2
  43. assert len(q5) == 0
  44. dht.shutdown()
  45. def _test_allreduce_once(n_clients, n_aux):
  46. n_peers = 4
  47. modes = (
  48. [AveragingMode.CLIENT] * n_clients
  49. + [AveragingMode.AUX] * n_aux
  50. + [AveragingMode.NODE] * (n_peers - n_clients - n_aux)
  51. )
  52. random.shuffle(modes)
  53. tensors1 = [torch.randn(123), torch.zeros(3)]
  54. tensors2 = [torch.rand(123), torch.ones(3)]
  55. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  56. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  57. peer_tensors = [tensors1, tensors2, tensors3, tensors4]
  58. reference = [
  59. sum(tensors[i] for tensors, mode in zip(peer_tensors, modes) if mode != AveragingMode.AUX)
  60. / max(1, n_peers - n_aux)
  61. for i in range(len(tensors1))
  62. ]
  63. dht_instances = launch_dht_instances(len(peer_tensors))
  64. averagers = [
  65. hivemind.averaging.DecentralizedAverager(
  66. tensors,
  67. dht=dht,
  68. target_group_size=4,
  69. averaging_expiration=15,
  70. prefix="mygroup",
  71. client_mode=mode == AveragingMode.CLIENT,
  72. auxiliary=mode == AveragingMode.AUX,
  73. start=True,
  74. )
  75. for tensors, dht, mode in zip(peer_tensors, dht_instances, modes)
  76. ]
  77. futures = []
  78. for averager in averagers:
  79. futures.append(averager.step(wait=False))
  80. for future in futures:
  81. result = future.result()
  82. for averager in averagers:
  83. assert averager.endpoint in result
  84. for averager in averagers:
  85. if averager.mode != AveragingMode.AUX:
  86. with averager.get_tensors() as averaged_tensors:
  87. for ref, our in zip(reference, averaged_tensors):
  88. assert torch.allclose(ref, our, atol=1e-6)
  89. for instance in averagers + dht_instances:
  90. instance.shutdown()
  91. @pytest.mark.forked
  92. @pytest.mark.parametrize("n_clients", [0, 1, 2])
  93. @pytest.mark.parametrize("n_aux", [0, 1, 2])
  94. def test_allreduce_once(n_clients, n_aux):
  95. _test_allreduce_once(n_clients, n_aux)
  96. @pytest.mark.forked
  97. @pytest.mark.parametrize("n_clients, n_aux", [(0, 4), (1, 3), (0, 3)])
  98. def test_allreduce_once_edge_cases(n_clients, n_aux):
  99. _test_allreduce_once(n_clients, n_aux)
  100. @pytest.mark.forked
  101. def test_allreduce_weighted(n_client_mode_peers: int = 2):
  102. n_peers = 4
  103. client_modes = [True] * n_client_mode_peers + [False] * (n_peers - n_client_mode_peers)
  104. random.shuffle(client_modes)
  105. tensors1 = [torch.randn(123), torch.zeros(3)]
  106. tensors2 = [torch.rand(123), torch.ones(3)]
  107. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  108. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  109. dht_instances = launch_dht_instances(4)
  110. averagers = [
  111. hivemind.averaging.DecentralizedAverager(
  112. tensors,
  113. dht=dht,
  114. target_group_size=4,
  115. averaging_expiration=15,
  116. prefix="mygroup",
  117. client_mode=client_mode,
  118. start=True,
  119. )
  120. for tensors, dht, client_mode in zip([tensors1, tensors2, tensors3, tensors4], dht_instances, client_modes)
  121. ]
  122. weights = list(map(float, np.random.rand(len(averagers)) * 10 + 0.01))
  123. reference = [
  124. (tensors1[i] * weights[0] + tensors2[i] * weights[1] + tensors3[i] * weights[2] + tensors4[i] * weights[3])
  125. / sum(weights)
  126. for i in range(len(tensors1))
  127. ]
  128. futures = []
  129. for averager, weight in zip(averagers, weights):
  130. futures.append(averager.step(weight=weight, wait=False))
  131. for future in futures:
  132. future.result()
  133. for future, averager in zip(futures, averagers):
  134. with averager.get_tensors() as averaged_tensors:
  135. for ref, our in zip(reference, averaged_tensors):
  136. assert torch.allclose(ref, our, atol=1e-6)
  137. for instance in averagers + dht_instances:
  138. instance.shutdown()
  139. @pytest.mark.forked
  140. def test_allreduce_compression():
  141. """this test ensures that compression works correctly when multiple tensors have different compression types"""
  142. tensors1 = [torch.linspace(0, 500, 1000) ** 0.5, torch.randn(1000)]
  143. tensors2 = [torch.linspace(300, 800, 1000) ** 0.5, torch.randn(1000)]
  144. results = {}
  145. FLOAT16, UINT8 = CompressionType.FLOAT16, CompressionType.UNIFORM_8BIT
  146. for compression_type_pair in [(FLOAT16, FLOAT16), (FLOAT16, UINT8), (UINT8, FLOAT16), (UINT8, UINT8)]:
  147. dht_instances = launch_dht_instances(2)
  148. averager1 = hivemind.averaging.DecentralizedAverager(
  149. [x.clone() for x in tensors1],
  150. dht=dht_instances[0],
  151. compression_type=compression_type_pair,
  152. client_mode=True,
  153. target_group_size=2,
  154. prefix="mygroup",
  155. start=True,
  156. )
  157. averager2 = hivemind.averaging.DecentralizedAverager(
  158. [x.clone() for x in tensors2],
  159. dht=dht_instances[1],
  160. compression_type=compression_type_pair,
  161. target_group_size=2,
  162. prefix="mygroup",
  163. start=True,
  164. )
  165. for future in averager1.step(wait=False), averager2.step(wait=False):
  166. future.result()
  167. with averager1.get_tensors() as averaged_tensors:
  168. results[compression_type_pair] = averaged_tensors
  169. for instance in [averager1, averager2] + dht_instances:
  170. instance.shutdown()
  171. assert torch.allclose(results[UINT8, FLOAT16][0], results[UINT8, UINT8][0])
  172. assert torch.allclose(results[UINT8, FLOAT16][1], results[FLOAT16, FLOAT16][1])
  173. assert torch.allclose(results[UINT8, UINT8][1], results[FLOAT16, UINT8][1])
  174. assert torch.allclose(results[FLOAT16, UINT8][0], results[FLOAT16, FLOAT16][0])
  175. assert not torch.allclose(results[UINT8, FLOAT16][1], results[UINT8, UINT8][1])
  176. assert not torch.allclose(results[UINT8, FLOAT16][0], results[FLOAT16, FLOAT16][0])
  177. assert not torch.allclose(results[UINT8, UINT8][0], results[FLOAT16, UINT8][0])
  178. assert not torch.allclose(results[FLOAT16, UINT8][1], results[FLOAT16, FLOAT16][1])
  179. reference = [(tensors1[i] + tensors2[i]) / 2 for i in range(len(tensors1))]
  180. for i in range(2):
  181. assert 0 < torch.mean(torch.square(results[FLOAT16, FLOAT16][i] - reference[i])).item() <= 1e-5
  182. assert 1e-5 < torch.mean(torch.square(results[UINT8, UINT8][i] - reference[i])).item() <= 1e-2
  183. def compute_mean_std(averagers, unbiased=True):
  184. results = []
  185. for averager in averagers:
  186. with averager.get_tensors() as tensors:
  187. results.append([tensor.clone() for tensor in tensors])
  188. results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
  189. means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
  190. stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
  191. return means, stds
  192. @pytest.mark.forked
  193. def test_allreduce_grid():
  194. dht_instances = launch_dht_instances(8)
  195. averagers = [
  196. hivemind.averaging.DecentralizedAverager(
  197. averaged_tensors=[torch.randn(3)],
  198. dht=dht,
  199. target_group_size=2,
  200. prefix="mygroup",
  201. initial_group_bits=bin(i // 2)[2:].rjust(2, "0"),
  202. start=True,
  203. )
  204. for i, dht in enumerate(dht_instances)
  205. ]
  206. [means0], [stds0] = compute_mean_std(averagers)
  207. assert not torch.allclose(stds0, torch.zeros_like(stds0))
  208. prev_means, prev_stds = means0, stds0
  209. for i in range(5):
  210. step_futures = [averager.step(wait=False) for averager in averagers]
  211. groups = [future.result() for future in step_futures]
  212. [means], [stds] = compute_mean_std(averagers)
  213. assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
  214. assert all(len(group) == 2 for group in groups)
  215. if i <= 2:
  216. assert torch.all(torch.le(stds, prev_stds))
  217. else:
  218. assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
  219. for averager in averagers + dht_instances:
  220. averager.shutdown()
  221. @pytest.mark.forked
  222. def test_allgather():
  223. dht_instances = launch_dht_instances(8)
  224. averagers = [
  225. hivemind.averaging.DecentralizedAverager(
  226. [torch.ones(1)],
  227. dht=dht,
  228. target_group_size=4,
  229. averaging_expiration=15,
  230. prefix="mygroup",
  231. initial_group_bits="000",
  232. start=True,
  233. )
  234. for dht in dht_instances
  235. ]
  236. futures = []
  237. for i, averager in enumerate(averagers):
  238. futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo="bar")))
  239. gathered_data = [future.result() for future in futures]
  240. gathered_data_reprs = [
  241. repr(sorted({peer_id.to_base58(): data for peer_id, data in result.items()})) for result in gathered_data
  242. ]
  243. assert len(set(gathered_data_reprs)) == 2
  244. reference_metadata = {
  245. averager.endpoint: dict(batch_size=123 + i, foo="bar") for i, averager in enumerate(averagers)
  246. }
  247. for future in futures:
  248. gathered = future.result()
  249. assert len(gathered) == 4
  250. for endpoint in gathered:
  251. assert gathered[endpoint] == reference_metadata[endpoint]
  252. for averager in averagers + dht_instances:
  253. averager.shutdown()
  254. def get_cost(vector_size, partitions, bandwidths):
  255. return max(
  256. (vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(bandwidths[i], 1e-9)
  257. for i in range(len(partitions))
  258. )
  259. def check_optimality(vector_size, bandwidths, ref_partitions):
  260. partitions = list(load_balance_peers(vector_size, bandwidths))
  261. assert get_cost(vector_size, partitions, bandwidths) <= get_cost(vector_size, ref_partitions, bandwidths)
  262. @pytest.mark.forked
  263. def test_load_balancing():
  264. check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
  265. check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
  266. check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
  267. check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
  268. check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
  269. check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
  270. assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
  271. assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
  272. assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
  273. assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
  274. assert load_balance_peers(100, (None, None)) == (50, 50)
  275. assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
  276. assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
  277. with pytest.raises(AssertionError):
  278. load_balance_peers(100, (0, 0, 0))
  279. for i in range(10):
  280. vector_size = np.random.randint(1, 1024 ** 3)
  281. num_peers = np.random.randint(1, 256)
  282. scale = 1e-9 + np.random.rand() * 1e5
  283. bandwidths = np.random.rand(num_peers) * scale + 1e-6
  284. min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
  285. assignment = load_balance_peers(vector_size, bandwidths, min_size)
  286. assert np.sum(assignment) == vector_size
  287. assert np.min(assignment) >= 0
  288. @pytest.mark.forked
  289. def test_too_few_peers():
  290. dht_instances = launch_dht_instances(4)
  291. averagers = [
  292. hivemind.averaging.DecentralizedAverager(
  293. averaged_tensors=[torch.randn(3)],
  294. dht=dht,
  295. target_group_size=2,
  296. averaging_expiration=1,
  297. request_timeout=0.5,
  298. prefix="mygroup",
  299. initial_group_bits=bin(i)[2:].rjust(3, "0"),
  300. start=True,
  301. )
  302. for i, dht in enumerate(dht_instances)
  303. ]
  304. step_futures = [averager.step(wait=False) for averager in averagers]
  305. for future in step_futures:
  306. assert len(future.result()) == 2
  307. for averager in averagers + dht_instances:
  308. averager.shutdown()
  309. @pytest.mark.skip(
  310. reason="The current implementation of elasticity (multi-stage averaging for the case when "
  311. "num_peers > ~3 * target_group_size) is incorrect (TODO @justheuristic)"
  312. )
  313. @pytest.mark.forked
  314. def test_overcrowded(num_peers=16):
  315. dht_instances = launch_dht_instances(num_peers)
  316. averagers = [
  317. hivemind.averaging.DecentralizedAverager(
  318. averaged_tensors=[torch.randn(3)],
  319. dht=dht,
  320. target_group_size=2,
  321. averaging_expiration=1,
  322. request_timeout=0.5,
  323. prefix="mygroup",
  324. initial_group_bits="",
  325. start=True,
  326. )
  327. for dht in dht_instances
  328. ]
  329. for _ in range(5):
  330. step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
  331. assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
  332. for averager in averagers + dht_instances:
  333. averager.shutdown()
  334. @pytest.mark.forked
  335. def test_load_state_from_peers():
  336. num_calls = 0
  337. super_metadata = dict(x=123)
  338. super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
  339. class TestAverager(hivemind.averaging.DecentralizedAverager):
  340. def get_current_state(self):
  341. """
  342. Get current state and send it to a peer. executed in the host process. Meant to be overriden.
  343. :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
  344. """
  345. nonlocal num_calls, super_metadata, super_tensors
  346. num_calls += 1
  347. return super_metadata, super_tensors
  348. dht_instances = launch_dht_instances(2)
  349. averager1 = TestAverager(
  350. [torch.randn(3), torch.rand(5)],
  351. dht=dht_instances[0],
  352. start=True,
  353. prefix="demo-run",
  354. target_group_size=2,
  355. )
  356. dht_instances[1].get("demo-run.all_averagers")
  357. averager2 = TestAverager(
  358. [torch.randn(3), torch.rand(5)],
  359. dht=dht_instances[1],
  360. start=True,
  361. prefix="demo-run",
  362. target_group_size=2,
  363. )
  364. assert num_calls == 0
  365. got_metadata, got_tensors = averager2.load_state_from_peers()
  366. assert num_calls == 1
  367. assert got_metadata == super_metadata
  368. assert all(map(torch.allclose, got_tensors, super_tensors))
  369. super_metadata["y"] = 123
  370. super_tensors[1][2] = 9
  371. assert num_calls == 1
  372. assert got_metadata != super_metadata
  373. assert not all(map(torch.allclose, got_tensors, super_tensors))
  374. got_metadata, got_tensors = averager2.load_state_from_peers()
  375. assert num_calls == 2
  376. assert got_metadata == super_metadata
  377. assert all(map(torch.allclose, got_tensors, super_tensors))
  378. averager1.allow_state_sharing = False
  379. assert averager2.load_state_from_peers() is None
  380. averager1.allow_state_sharing = True
  381. got_metadata, got_tensors = averager2.load_state_from_peers()
  382. assert num_calls == 3
  383. assert got_metadata == super_metadata
  384. for instance in [averager1, averager2] + dht_instances:
  385. instance.shutdown()
  386. @pytest.mark.forked
  387. def test_getset_bits():
  388. dht = hivemind.DHT(start=True)
  389. averager = hivemind.averaging.DecentralizedAverager(
  390. [torch.randn(3)],
  391. dht=dht,
  392. start=True,
  393. prefix="test_prefix",
  394. target_group_size=2,
  395. )
  396. averager.set_group_bits("00101011101010")
  397. assert averager.get_group_bits() == "00101011101010"
  398. @pytest.mark.forked
  399. def test_training_averager(n_steps: int = 10, n_dims: int = 16):
  400. torch.manual_seed(42)
  401. dht_instances = launch_dht_instances(2)
  402. common_kwargs = {
  403. "start": True,
  404. "prefix": "demo-run",
  405. "target_group_size": 2,
  406. }
  407. x1 = torch.randn(n_dims, requires_grad=True)
  408. opt1 = torch.optim.Adam([x1], lr=0.05)
  409. averager1 = hivemind.averaging.TrainingAverager(
  410. opt1,
  411. average_gradients=True,
  412. average_parameters=True,
  413. average_opt_statistics=["exp_avg_sq"],
  414. dht=dht_instances[0],
  415. **common_kwargs
  416. )
  417. x2 = torch.randn(n_dims, requires_grad=True)
  418. opt2 = torch.optim.Adam([x2], lr=0.05)
  419. averager2 = hivemind.averaging.TrainingAverager(
  420. opt2,
  421. average_gradients=True,
  422. average_parameters=True,
  423. average_opt_statistics=["exp_avg_sq"],
  424. dht=dht_instances[1],
  425. **common_kwargs
  426. )
  427. a = torch.ones(n_dims)
  428. for i in range(n_steps):
  429. opt1.zero_grad()
  430. opt2.zero_grad()
  431. (x1 - a).pow(2).sum().backward()
  432. (x2 - a).pow(2).sum().backward()
  433. opt1.step()
  434. opt2.step()
  435. with torch.no_grad():
  436. x_avg = 0.5 * (x1 + x2)
  437. grad_avg = 0.5 * (x1.grad + x2.grad)
  438. stats_avg = 0.5 * (opt1.state[x1]["exp_avg_sq"] + opt2.state[x2]["exp_avg_sq"])
  439. # we set wait=False in order to prevent deadlock, when averager1 locks and waits for averager2
  440. f1 = averager1.step(wait=False)
  441. f2 = averager2.step(wait=False)
  442. f1.result()
  443. f2.result()
  444. assert torch.allclose(x1, x_avg)
  445. assert torch.allclose(x2, x_avg)
  446. assert torch.allclose(x1.grad, grad_avg)
  447. assert torch.allclose(x2.grad, grad_avg)
  448. assert torch.allclose(opt1.state[x1]["exp_avg_sq"], stats_avg)
  449. assert torch.allclose(opt2.state[x2]["exp_avg_sq"], stats_avg)
  450. for instance in [averager1, averager2] + dht_instances:
  451. instance.shutdown()
  452. if __name__ == '__main__':
  453. with cleanup_children():
  454. loop = asyncio.new_event_loop()
  455. loop.run_until_complete(test_key_manager())
  456. print(f"test_key_manager()")
  457. del loop
  458. for n_clients in [0, 1, 2]:
  459. for n_aux in [0, 1, 2]:
  460. with cleanup_children():
  461. _test_allreduce_once(n_clients, n_aux)
  462. print(f"_test_allreduce_once({n_clients}, {n_aux})")
  463. for n_clients, n_aux in [(0, 4), (1, 3), (0, 3)]:
  464. with cleanup_children():
  465. _test_allreduce_once(n_clients, n_aux)
  466. print(f"_test_allreduce_once({n_clients}, {n_aux})")
  467. print("DONE!")