test_moe.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. import grpc
  2. import numpy as np
  3. import pytest
  4. import torch
  5. import hivemind
  6. from hivemind.moe.server import background_server, declare_experts
  7. from hivemind.moe.client.expert import DUMMY
  8. from hivemind.moe.server import layers
  9. @pytest.mark.forked
  10. def test_moe():
  11. all_expert_uids = [
  12. f"ffn.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}" for _ in range(10)
  13. ]
  14. with background_server(
  15. expert_uids=all_expert_uids, device="cpu", expert_cls="ffn", num_handlers=1, hidden_dim=16
  16. ) as (server_endpoint, dht_maddrs):
  17. dht = hivemind.DHT(start=True, initial_peers=dht_maddrs)
  18. dmoe = hivemind.RemoteMixtureOfExperts(
  19. in_features=16, grid_size=(4, 4, 4), dht=dht, k_best=3, uid_prefix="ffn."
  20. )
  21. for i in range(3):
  22. out = dmoe(torch.randn(10, 16))
  23. out.sum().backward()
  24. @pytest.mark.forked
  25. def test_no_experts():
  26. all_expert_uids = [
  27. f"expert.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}" for _ in range(10)
  28. ]
  29. with background_server(
  30. expert_uids=all_expert_uids, device="cpu", expert_cls="nop_delay", num_handlers=1, hidden_dim=16
  31. ) as (server_endpoint, dht_maddrs):
  32. dht = hivemind.DHT(start=True, initial_peers=dht_maddrs)
  33. dmoe = hivemind.RemoteSwitchMixtureOfExperts(
  34. in_features=16,
  35. grid_size=(4, 4, 4),
  36. dht=dht,
  37. uid_prefix="expert.",
  38. forward_timeout=0.1,
  39. backward_timeout=0.1,
  40. allow_zero_outputs=True,
  41. )
  42. for i in range(3):
  43. out, balancing_loss = dmoe(torch.randn(10, 16))
  44. out.sum().backward()
  45. @pytest.mark.forked
  46. def test_call_many(hidden_dim=16):
  47. k_min = 1
  48. timeout_after_k_min = None
  49. backward_k_min = 1
  50. forward_timeout = None
  51. backward_timeout = None
  52. detect_anomalies = False
  53. allow_zero_outputs = False
  54. atol = 1e-5
  55. with background_server(
  56. num_experts=5,
  57. device="cpu",
  58. expert_cls="ffn",
  59. num_handlers=1,
  60. hidden_dim=hidden_dim,
  61. optim_cls=None,
  62. no_dht=True,
  63. ) as (server_endpoint, _):
  64. inputs = torch.randn(4, hidden_dim, requires_grad=True)
  65. inputs_clone = inputs.clone().detach().requires_grad_(True)
  66. e0, e1, e2, e3, e4 = [hivemind.RemoteExpert(f"expert.{i}", server_endpoint) for i in range(5)]
  67. e5 = hivemind.RemoteExpert(f"thisshouldnotexist", "127.0.0.1:80")
  68. mask, expert_outputs = hivemind.moe.client.moe._RemoteCallMany.apply(
  69. DUMMY,
  70. [[e0, e1, e2], [e2, e4], [e1, e5, e3], []],
  71. k_min,
  72. backward_k_min,
  73. timeout_after_k_min,
  74. forward_timeout,
  75. backward_timeout,
  76. detect_anomalies,
  77. allow_zero_outputs,
  78. e1.info,
  79. inputs,
  80. )
  81. assert mask.shape == (4, 3)
  82. assert expert_outputs.shape == (4, 3, hidden_dim)
  83. assert np.all(
  84. mask.data.numpy()
  85. == np.array([[True, True, True], [True, True, False], [True, False, True], [False, False, False]])
  86. ), f"Incorrect mask, {mask}"
  87. reference_outputs = torch.zeros_like(expert_outputs)
  88. reference_outputs[0, 0] = e0(inputs_clone[0:1])
  89. reference_outputs[0, 1] = e1(inputs_clone[0:1])
  90. reference_outputs[0, 2] = e2(inputs_clone[0:1])
  91. reference_outputs[1, 0] = e2(inputs_clone[1:2])
  92. reference_outputs[1, 1] = e4(inputs_clone[1:2])
  93. reference_outputs[2, 0] = e1(inputs_clone[2:3])
  94. reference_outputs[2, 2] = e3(inputs_clone[2:3])
  95. assert torch.allclose(expert_outputs, reference_outputs, atol=atol, rtol=0)
  96. proj = torch.randn(4, hidden_dim)
  97. loss = (expert_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
  98. loss.backward()
  99. our_grad = inputs.grad.data.cpu().clone()
  100. reference_loss = (reference_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
  101. reference_loss.backward()
  102. reference_grad = inputs_clone.grad.data.cpu().clone()
  103. assert torch.allclose(our_grad, reference_grad, atol=atol, rtol=0)
  104. @pytest.mark.forked
  105. def test_remote_module_call(hidden_dim=16):
  106. with background_server(
  107. num_experts=1,
  108. device="cpu",
  109. expert_cls="ffn",
  110. num_handlers=1,
  111. hidden_dim=hidden_dim,
  112. optim_cls=None,
  113. no_dht=True,
  114. ) as (server_endpoint, _):
  115. real_expert = hivemind.RemoteExpert("expert.0", server_endpoint)
  116. fake_expert = hivemind.RemoteExpert("oiasfjiasjf", server_endpoint)
  117. out1 = real_expert(torch.randn(1, hidden_dim))
  118. assert out1.shape == (1, hidden_dim)
  119. dummy_x = torch.randn(3, hidden_dim, requires_grad=True)
  120. out3 = real_expert(dummy_x)
  121. assert out3.shape == (3, hidden_dim)
  122. out3_again = real_expert(dummy_x[1:])
  123. assert torch.allclose(out3_again, out3[1:], atol=1e-5, rtol=0)
  124. out3_again.norm().backward()
  125. assert dummy_x.grad is not None and dummy_x.grad.norm() > 0
  126. with pytest.raises(grpc.RpcError):
  127. real_expert(torch.randn(3, 11))
  128. with pytest.raises(grpc.RpcError):
  129. fake_expert(dummy_x)
  130. @pytest.mark.forked
  131. def test_beam_search_correctness():
  132. all_expert_uids = [f"ffn.{5 + i}.{10 + j}.{15 + k}" for i in range(10) for j in range(10) for k in range(10)]
  133. dht = hivemind.DHT(start=True)
  134. assert all(declare_experts(dht, all_expert_uids, endpoint="fake-endpoint"))
  135. dmoe = hivemind.RemoteMixtureOfExperts(
  136. in_features=32, grid_size=(32, 32, 32), dht=dht, k_best=4, uid_prefix="ffn."
  137. )
  138. for i in range(25):
  139. input = torch.randn(32)
  140. grid_scores = dmoe.proj(input).split_with_sizes(dmoe.beam_search.grid_size, dim=-1)
  141. chosen_experts = dmoe.beam_search.find_best_experts(
  142. [tensor.detach().numpy() for tensor in grid_scores], beam_size=dmoe.k_best
  143. )
  144. chosen_scores = dmoe.compute_expert_scores([dim_scores[None] for dim_scores in grid_scores], [chosen_experts])[
  145. 0
  146. ]
  147. our_best_scores = list(chosen_scores.cpu().detach().numpy())
  148. # reference: independently find :beam_size: best experts with exhaustive search
  149. all_scores = dmoe.compute_expert_scores(
  150. [dim_scores.unsqueeze(0) for dim_scores in grid_scores],
  151. [[hivemind.RemoteExpert(uid, "") for uid in all_expert_uids]],
  152. )[0]
  153. true_best_scores = sorted(all_scores.cpu().detach().numpy(), reverse=True)[: len(chosen_experts)]
  154. assert np.allclose(true_best_scores, our_best_scores)
  155. @pytest.mark.forked
  156. def test_determinism(hidden_dim=16):
  157. atol = 1e-5
  158. xx = torch.randn(32, hidden_dim, requires_grad=True)
  159. mask = torch.randint(0, 1, (32, hidden_dim))
  160. with background_server(
  161. num_experts=1,
  162. device="cpu",
  163. expert_cls="det_dropout",
  164. num_handlers=1,
  165. hidden_dim=hidden_dim,
  166. optim_cls=None,
  167. no_dht=True,
  168. ) as (server_endpoint, _):
  169. expert = hivemind.RemoteExpert(uid=f"expert.0", endpoint=server_endpoint)
  170. out = expert(xx, mask)
  171. out_rerun = expert(xx, mask)
  172. (grad,) = torch.autograd.grad(out.sum(), xx, retain_graph=True)
  173. (grad_rerun,) = torch.autograd.grad(out_rerun.sum(), xx, retain_graph=True)
  174. assert torch.allclose(out, out_rerun, atol=atol, rtol=0), "Dropout layer outputs are non-deterministic."
  175. assert torch.allclose(grad, grad_rerun, atol=atol, rtol=0), "Gradients are non-deterministic."
  176. @pytest.mark.forked
  177. def test_compute_expert_scores():
  178. try:
  179. dht = hivemind.DHT(start=True)
  180. moe = hivemind.moe.RemoteMixtureOfExperts(
  181. dht=dht, in_features=16, grid_size=(40,), k_best=4, k_min=1, timeout_after_k_min=1, uid_prefix="expert."
  182. )
  183. gx, gy = torch.randn(4, 5, requires_grad=True), torch.randn(4, 3, requires_grad=True)
  184. ii = [[4, 0, 2], [3, 1, 1, 1, 3], [0], [3, 2]]
  185. jj = [[2, 2, 1], [0, 1, 2, 0, 1], [0], [1, 2]]
  186. batch_experts = [
  187. [
  188. hivemind.RemoteExpert(
  189. uid=f"expert.{ii[batch_i][expert_i]}.{jj[batch_i][expert_i]}", endpoint="[::]:1337"
  190. )
  191. for expert_i in range(len(ii[batch_i]))
  192. ]
  193. for batch_i in range(len(ii))
  194. ] # note: these experts do not exists on server, we use them only to test moe compute_expert_scores
  195. logits = moe.compute_expert_scores([gx, gy], batch_experts)
  196. torch.softmax(logits, dim=-1).norm(dim=-1).mean().backward()
  197. assert gx.grad.norm().item() > 0 and gy.grad.norm().item(), "compute_expert_scores didn't backprop"
  198. for batch_i in range(len(ii)):
  199. for expert_i in range(len(ii[batch_i])):
  200. assert torch.allclose(
  201. logits[batch_i, expert_i], gx[batch_i, ii[batch_i][expert_i]] + gy[batch_i, jj[batch_i][expert_i]]
  202. ), "compute_expert_scores returned incorrect score"
  203. finally:
  204. dht.shutdown()
  205. @pytest.mark.forked
  206. def test_client_anomaly_detection():
  207. HID_DIM = 16
  208. experts = {}
  209. for i in range(4):
  210. expert = layers.name_to_block["ffn"](HID_DIM)
  211. experts[f"expert.{i}"] = hivemind.ExpertBackend(
  212. name=f"expert.{i}",
  213. expert=expert,
  214. optimizer=torch.optim.Adam(expert.parameters()),
  215. args_schema=(hivemind.BatchTensorDescriptor(HID_DIM),),
  216. outputs_schema=hivemind.BatchTensorDescriptor(HID_DIM),
  217. max_batch_size=16,
  218. )
  219. experts["expert.3"].expert.ffn.weight.data[0, 0] = float("nan")
  220. dht = hivemind.DHT(start=True)
  221. server = hivemind.moe.Server(dht, experts, num_connection_handlers=1)
  222. server.start()
  223. try:
  224. server.ready.wait()
  225. dmoe = hivemind.RemoteMixtureOfExperts(
  226. in_features=16, grid_size=(3,), dht=dht, k_best=3, uid_prefix="expert.", detect_anomalies=True
  227. )
  228. input = torch.randn(1, 16)
  229. input[0, 0] = float("nan")
  230. with pytest.raises(ValueError):
  231. dmoe(input)
  232. input[0, 0] = 0
  233. output = dmoe(input)
  234. inf_loss = float("inf") * output.sum()
  235. with pytest.raises(ValueError):
  236. inf_loss.backward()
  237. dmoe = hivemind.RemoteMixtureOfExperts(
  238. in_features=16, grid_size=(4,), dht=dht, k_best=4, uid_prefix="expert.", detect_anomalies=True
  239. )
  240. output = dmoe(input)
  241. assert output.isfinite().all()
  242. finally:
  243. server.shutdown()