test_training.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. import time
  2. from functools import partial
  3. import pytest
  4. import torch
  5. import torch.nn as nn
  6. import torch.nn.functional as F
  7. from sklearn.datasets import load_digits
  8. from hivemind import RemoteExpert, RemoteMixtureOfExperts, RemoteSwitchMixtureOfExperts, background_server, DHT, \
  9. DecentralizedSGD, DecentralizedAdam
  10. @pytest.mark.forked
  11. def test_training(max_steps: int = 100, threshold: float = 0.9):
  12. dataset = load_digits(n_class=2)
  13. X_train, y_train = torch.tensor(dataset['data'], dtype=torch.float), torch.tensor(dataset['target'])
  14. SGD = partial(torch.optim.SGD, lr=0.05)
  15. with background_server(num_experts=2, device='cpu', optim_cls=SGD, hidden_dim=64, num_handlers=1,
  16. no_dht=True) as (server_endpoint, dht_endpoint):
  17. expert1 = RemoteExpert('expert.0', server_endpoint)
  18. expert2 = RemoteExpert('expert.1', server_endpoint)
  19. model = nn.Sequential(expert2, nn.ReLU(), expert1, nn.Linear(64, 2))
  20. opt = SGD(model.parameters(), lr=0.05)
  21. for step in range(max_steps):
  22. outputs = model(X_train)
  23. loss = F.cross_entropy(outputs, y_train)
  24. loss.backward()
  25. opt.step()
  26. opt.zero_grad()
  27. accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
  28. if accuracy >= threshold:
  29. break
  30. assert accuracy >= threshold, f"too small accuracy: {accuracy}"
  31. @pytest.mark.forked
  32. def test_moe_training(max_steps: int = 100, threshold: float = 0.9, num_experts=2):
  33. dataset = load_digits(n_class=2)
  34. X_train, y_train = torch.tensor(dataset['data'], dtype=torch.float), torch.tensor(dataset['target'])
  35. SGD = partial(torch.optim.SGD, lr=0.05)
  36. all_expert_uids = [f'expert.{i}' for i in range(num_experts)]
  37. with background_server(expert_uids=all_expert_uids, device='cpu', optim_cls=SGD, hidden_dim=64, num_handlers=1) \
  38. as (server_endpoint, dht_endpoint):
  39. dht = DHT(start=True, initial_peers=[dht_endpoint])
  40. moe = RemoteMixtureOfExperts(in_features=64, grid_size=(num_experts,), dht=dht, uid_prefix='expert.', k_best=2)
  41. model = nn.Sequential(moe, nn.Linear(64, 2))
  42. opt = SGD(model.parameters(), lr=0.05)
  43. for step in range(max_steps):
  44. outputs = model(X_train)
  45. loss = F.cross_entropy(outputs, y_train)
  46. loss.backward()
  47. opt.step()
  48. opt.zero_grad()
  49. accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
  50. if accuracy >= threshold:
  51. break
  52. assert accuracy >= threshold, f"too small accuracy: {accuracy}"
  53. class SwitchNetwork(nn.Module):
  54. def __init__(self, dht, in_features, num_classes, num_experts):
  55. super().__init__()
  56. self.moe = RemoteSwitchMixtureOfExperts(in_features=in_features, grid_size=(num_experts,), dht=dht,
  57. jitter_eps=0, uid_prefix='expert.', k_best=1,
  58. k_min=1)
  59. self.linear = nn.Linear(in_features, num_classes)
  60. def forward(self, x):
  61. moe_output, balancing_loss = self.moe(x)
  62. return self.linear(moe_output), balancing_loss
  63. @pytest.mark.forked
  64. def test_switch_training(max_steps: int = 10, threshold: float = 0.9, num_experts=5):
  65. dataset = load_digits(n_class=2)
  66. X_train, y_train = torch.tensor(dataset['data'], dtype=torch.float), torch.tensor(dataset['target'])
  67. SGD = partial(torch.optim.SGD, lr=0.05)
  68. all_expert_uids = [f'expert.{i}' for i in range(num_experts)]
  69. with background_server(expert_uids=all_expert_uids, device='cpu', optim_cls=SGD, hidden_dim=64,
  70. num_handlers=1) as (server_endpoint, dht_endpoint):
  71. dht = DHT(start=True, initial_peers=[dht_endpoint])
  72. model = SwitchNetwork(dht, 64, 2, num_experts)
  73. opt = SGD(model.parameters(), lr=0.05)
  74. for step in range(max_steps):
  75. outputs, balancing_loss = model(X_train)
  76. loss = F.cross_entropy(outputs, y_train) + 0.01 * balancing_loss
  77. loss.backward()
  78. opt.step()
  79. opt.zero_grad()
  80. accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
  81. if accuracy >= threshold:
  82. break
  83. assert model.moe.grid_utilization.min().item() > (1 / num_experts) / 2
  84. assert accuracy >= threshold, f"too small accuracy: {accuracy}"
  85. @pytest.mark.forked
  86. def test_decentralized_optimizer_step():
  87. dht_root = DHT(start=True)
  88. initial_peers = [f"127.0.0.1:{dht_root.port}"]
  89. param1 = torch.nn.Parameter(torch.zeros(32, 32), requires_grad=True)
  90. opt1 = DecentralizedSGD([param1], lr=0.1, dht=DHT(initial_peers=initial_peers, start=True),
  91. prefix='foo', target_group_size=2, verbose=True)
  92. param2 = torch.nn.Parameter(torch.ones(32, 32), requires_grad=True)
  93. opt2 = DecentralizedSGD([param2], lr=0.05, dht=DHT(initial_peers=initial_peers, start=True),
  94. prefix='foo', target_group_size=2, verbose=True)
  95. assert not torch.allclose(param1, param2)
  96. (param1.sum() + 300 * param2.sum()).backward()
  97. opt1.step()
  98. opt2.step()
  99. time.sleep(0.5)
  100. assert torch.allclose(param1, param2)
  101. reference = 0.5 * (0.0 - 0.1 * 1.0) + 0.5 * (1.0 - 0.05 * 300)
  102. assert torch.allclose(param1, torch.full_like(param1, reference))
  103. @pytest.mark.forked
  104. def test_decentralized_optimizer_averaging():
  105. dht_root = DHT(start=True)
  106. initial_peers = [f"127.0.0.1:{dht_root.port}"]
  107. param1 = torch.nn.Parameter(torch.zeros(32, 32), requires_grad=True)
  108. opt1 = DecentralizedAdam([param1], lr=0.1, averaging_steps_period=1, dht=DHT(initial_peers=initial_peers, start=True),
  109. prefix='foo', target_group_size=2, verbose=True)
  110. param2 = torch.nn.Parameter(torch.ones(32, 32), requires_grad=True)
  111. opt2 = DecentralizedAdam([param2], lr=0.05, averaging_steps_period=1, dht=DHT(initial_peers=initial_peers, start=True),
  112. prefix='foo', target_group_size=2, verbose=True)
  113. assert not torch.allclose(param1, param2)
  114. (param1.sum() + param2.sum()).backward()
  115. opt1.step()
  116. opt2.step()
  117. time.sleep(0.5)
  118. assert torch.allclose(param1, param2)
  119. assert torch.allclose(opt1.state[param1]["exp_avg_sq"], opt2.state[param2]["exp_avg_sq"])