123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- import pickle
- from concurrent.futures import Future
- from queue import Queue
- from threading import Thread
- from typing import Any, Awaitable, Dict, Optional, Tuple
- import torch
- import torch.nn as nn
- from torch.autograd.function import once_differentiable
- import hivemind
- from hivemind.compression import deserialize_torch_tensor, serialize_torch_tensor
- from hivemind.p2p import P2P, PeerInfo, StubBase
- from hivemind.proto import runtime_pb2
- from hivemind.utils import asingle, nested_compare, nested_flatten, nested_pack, switch_to_uvloop
- DUMMY = torch.empty(0, requires_grad=True) # dummy tensor that triggers autograd in RemoteExpert
- def _get_expert_stub(p2p: P2P, server_peer_info: PeerInfo): # -> ConnectionHandlerStub:
- return hivemind.moe.server.connection_handler.ConnectionHandler.get_stub(p2p, server_peer_info.peer_id)
- class RemoteExpert(nn.Module):
- """
- A simple module that runs forward/backward of an expert hosted on a remote machine.
- Works seamlessly with pytorch autograd. (this is essentially a simple RPC function)
- Warning: RemoteExpert currently assumes that you provide it with correct input shapes.
- Sending wrong input shapes can cause RemoteExpert to freeze indefinitely due to error in runtime.
- :param uid: unique expert identifier
- """
- def __init__(self, uid, server_peer_info: PeerInfo, p2p: Optional[P2P] = None, connect: bool = True):
- super().__init__()
- self.uid, self.server_peer_info = uid, server_peer_info
- self._info = None
- if p2p is None:
- self.p2p = _RemoteModuleCall.run_coroutine(P2P.create())
- else:
- self.p2p = p2p
- if connect:
- _RemoteModuleCall.run_coroutine(self.p2p._client.connect(server_peer_info.peer_id, server_peer_info.addrs))
- @property
- def stub(self) -> StubBase:
- return _get_expert_stub(self.p2p, self.server_peer_info)
- def forward(self, *args, **kwargs):
- """Call RemoteExpert for the specified inputs and return its output(s). Compatible with pytorch.autograd."""
- assert len(kwargs) == len(self.info["keyword_names"]), f"Keyword args should be {self.info['keyword_names']}"
- kwargs = {key: kwargs[key] for key in self.info["keyword_names"]}
- # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
- forward_inputs = (args, kwargs)
- if not nested_compare(forward_inputs, self.info["forward_schema"]):
- raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
- flat_outputs = _RemoteModuleCall.apply(DUMMY, self.uid, self.stub, self.info, *nested_flatten(forward_inputs))
- # Note: we send DUMMY to prevent torch from excluding expert from backward if no other inputs require grad
- return nested_pack(flat_outputs, structure=self.info["outputs_schema"])
- @property
- def info(self):
- if self._info is None:
- outputs = _RemoteModuleCall.run_coroutine(self.stub.rpc_info(runtime_pb2.ExpertUID(uid=self.uid)))
- self._info = pickle.loads(outputs.serialized_info)
- return self._info
- def extra_repr(self):
- return f"uid={self.uid}, server_peer_info={self.server_peer_info}"
- class _RemoteModuleCall(torch.autograd.Function):
- """Internal autograd-friendly call of a remote module. For applications, use RemoteExpert instead."""
- _task_queue: Queue = Queue()
- _event_thread: Optional[Thread] = None
- @classmethod
- def _run(cls):
- loop = switch_to_uvloop()
- async def receive_tasks():
- while True:
- cor, future = cls._task_queue.get()
- try:
- result = await cor
- except Exception as e:
- future.set_exception(e)
- continue
- future.set_result(result)
- loop.run_until_complete(receive_tasks())
- @classmethod
- def run_coroutine(cls, coro: Awaitable, return_future: bool = False):
- if cls._event_thread is None:
- cls._event_thread = Thread(target=cls._run, daemon=True)
- cls._event_thread.start()
- future = Future()
- cls._task_queue.put((coro, future))
- if return_future:
- return future
- result = future.result()
- return result
- @classmethod
- def forward(
- cls,
- ctx,
- dummy: torch.Tensor,
- uid: str,
- stub, #: ConnectionHandlerStub,
- info: Dict[str, Any],
- *inputs: torch.Tensor,
- ) -> Tuple[torch.Tensor, ...]:
- # Note: *inputs are flattened input tensors that follow the expert's info['input_schema']
- # detach to avoid pickling the computation graph
- inputs = tuple(tensor.cpu().detach() for tensor in inputs)
- ctx.uid, ctx.stub, ctx.info = uid, stub, info
- ctx.save_for_backward(*inputs)
- serialized_tensors = [
- serialize_torch_tensor(inp, proto.compression)
- for inp, proto in zip(inputs, nested_flatten(info["forward_schema"]))
- ]
- outputs = cls.run_coroutine(
- asingle(
- stub.rpc_forward(runtime_pb2.ExpertRequest(uid=ctx.uid, tensors=serialized_tensors)),
- ),
- )
- deserialized_outputs = [deserialize_torch_tensor(tensor) for tensor in outputs.tensors]
- return tuple(deserialized_outputs)
- @classmethod
- @once_differentiable
- def backward(cls, ctx, *grad_outputs) -> Tuple[Optional[torch.Tensor], ...]:
- grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs)
- inputs_and_grad_outputs = tuple(nested_flatten((ctx.saved_tensors, grad_outputs_cpu)))
- backward_schema = tuple(nested_flatten((ctx.info["forward_schema"], ctx.info["outputs_schema"])))
- serialized_tensors = [
- serialize_torch_tensor(tensor, proto.compression)
- for tensor, proto in zip(inputs_and_grad_outputs, backward_schema)
- ]
- grad_inputs = cls.run_coroutine(
- asingle(
- ctx.stub.rpc_forward(runtime_pb2.ExpertRequest(uid=ctx.uid, tensors=serialized_tensors)),
- ),
- )
- deserialized_grad_inputs = [deserialize_torch_tensor(tensor) for tensor in grad_inputs.tensors]
- return (DUMMY, None, None, None, *deserialized_grad_inputs)
|