123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- import codecs
- import glob
- import hashlib
- import os
- import re
- import shlex
- import subprocess
- import tarfile
- import tempfile
- import urllib.request
- from packaging import version
- from pkg_resources import parse_requirements
- from setuptools import find_packages, setup
- from setuptools.command.develop import develop
- from setuptools.command.install import install
- P2PD_VERSION = 'v0.3.1'
- P2PD_CHECKSUM = '8810097959db720208cdc9f2945804a4'
- LIBP2P_TAR_URL = f'https://github.com/learning-at-home/go-libp2p-daemon/archive/refs/tags/{P2PD_VERSION}.tar.gz'
- here = os.path.abspath(os.path.dirname(__file__))
- def md5(fname, chunk_size=4096):
- hash_md5 = hashlib.md5()
- with open(fname, "rb") as f:
- for chunk in iter(lambda: f.read(chunk_size), b""):
- hash_md5.update(chunk)
- return hash_md5.hexdigest()
- def proto_compile(output_path):
- import grpc_tools.protoc
- cli_args = ['grpc_tools.protoc',
- '--proto_path=hivemind/proto', f'--python_out={output_path}',
- f'--grpc_python_out={output_path}'] + glob.glob('hivemind/proto/*.proto')
- code = grpc_tools.protoc.main(cli_args)
- if code: # hint: if you get this error in jupyter, run in console for richer error message
- raise ValueError(f"{' '.join(cli_args)} finished with exit code {code}")
- # Make pb2 imports in generated scripts relative
- for script in glob.iglob(f'{output_path}/*.py'):
- with open(script, 'r+') as file:
- code = file.read()
- file.seek(0)
- file.write(re.sub(r'\n(import .+_pb2.*)', 'from . \\1', code))
- file.truncate()
- def libp2p_build_install():
- result = subprocess.run("go version", capture_output=True, shell=True).stdout.decode('ascii', 'replace')
- m = re.search(r'^go version go([\d.]+)', result)
- if m is None:
- raise FileNotFoundError('Could not find golang installation')
- if version.parse(m.group(1)) < version.parse("1.13"):
- raise EnvironmentError(f'Newer version of go required: must be >= 1.13, found {version}')
- with tempfile.TemporaryDirectory() as tempdir:
- dest = os.path.join(tempdir, 'libp2p-daemon.tar.gz')
- urllib.request.urlretrieve(LIBP2P_TAR_URL, dest)
- with tarfile.open(dest, 'r:gz') as tar:
- tar.extractall(tempdir)
- result = subprocess.run(f'go build -o {shlex.quote(os.path.join(here, "hivemind", "hivemind_cli", "p2pd"))}',
- cwd=os.path.join(tempdir, f'go-libp2p-daemon-{P2PD_VERSION[1:]}', 'p2pd'), shell=True)
- if result.returncode:
- raise RuntimeError('Failed to build or install libp2p-daemon:'
- f' exited with status code: {result.returncode}')
- def libp2p_download_install():
- install_path = os.path.join(here, 'hivemind', 'hivemind_cli')
- binary_path = os.path.join(install_path, 'p2pd')
- if 'p2pd' not in os.listdir(install_path) or md5(binary_path) != P2PD_CHECKSUM:
- print('Downloading Peer to Peer Daemon')
- url = f'https://github.com/learning-at-home/go-libp2p-daemon/releases/download/{P2PD_VERSION}/p2pd'
- urllib.request.urlretrieve(url, binary_path)
- os.chmod(binary_path, 0o777)
- if md5(binary_path) != P2PD_CHECKSUM:
- raise RuntimeError(f'Downloaded p2pd binary from {url} does not match with md5 checksum')
- class Install(install):
- user_options = install.user_options + [('buildgo', None, "Builds p2pd from source")]
- def initialize_options(self):
- super().initialize_options()
- self.buildgo = False
- def run(self):
- if self.buildgo:
- libp2p_build_install()
- else:
- libp2p_download_install()
- proto_compile(os.path.join(self.build_lib, 'hivemind', 'proto'))
- super().run()
- class Develop(develop):
- user_options = develop.user_options + [('buildgo', None, None)]
- def initialize_options(self):
- super().initialize_options()
- self.buildgo = False
- def run(self):
- if self.buildgo:
- libp2p_build_install()
- else:
- libp2p_download_install()
- proto_compile(os.path.join('hivemind', 'proto'))
- super().run()
- with open('requirements.txt') as requirements_file:
- install_requires = list(map(str, parse_requirements(requirements_file)))
- # loading version from setup.py
- with codecs.open(os.path.join(here, 'hivemind/__init__.py'), encoding='utf-8') as init_file:
- version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", init_file.read(), re.M)
- version_string = version_match.group(1)
- extras = {}
- with open('requirements-dev.txt') as dev_requirements_file:
- extras['dev'] = list(map(str, parse_requirements(dev_requirements_file)))
- with open('requirements-docs.txt') as docs_requirements_file:
- extras['docs'] = list(map(str, parse_requirements(docs_requirements_file)))
- extras['all'] = extras['dev'] + extras['docs']
- setup(
- name='hivemind',
- version=version_string,
- cmdclass={'install': Install, 'develop': Develop},
- description='Decentralized deep learning in PyTorch',
- long_description='Decentralized deep learning in PyTorch. Built to train giant models on '
- 'thousands of volunteers across the world.',
- author='Learning@home & contributors',
- author_email='mryabinin0@gmail.com',
- url="https://github.com/learning-at-home/hivemind",
- packages=find_packages(exclude=['tests']),
- package_data={'hivemind': ['proto/*']},
- include_package_data=True,
- license='MIT',
- setup_requires=['grpcio-tools'],
- install_requires=install_requires,
- extras_require=extras,
- classifiers=[
- 'Development Status :: 4 - Beta',
- 'Intended Audience :: Developers',
- 'Intended Audience :: Science/Research',
- 'License :: OSI Approved :: MIT License',
- 'Programming Language :: Python :: 3',
- 'Programming Language :: Python :: 3.7',
- 'Programming Language :: Python :: 3.8',
- 'Programming Language :: Python :: 3.9',
- 'Topic :: Scientific/Engineering',
- 'Topic :: Scientific/Engineering :: Mathematics',
- 'Topic :: Scientific/Engineering :: Artificial Intelligence',
- 'Topic :: Software Development',
- 'Topic :: Software Development :: Libraries',
- 'Topic :: Software Development :: Libraries :: Python Modules',
- ],
- entry_points={
- 'console_scripts': ['hivemind-server = hivemind.hivemind_cli.run_server:main', ]
- },
- # What does your project relate to?
- keywords='pytorch, deep learning, machine learning, gpu, distributed computing, volunteer computing, dht',
- )
|