run_training_monitor.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. #!/usr/bin/env python3
  2. import time
  3. from dataclasses import asdict, dataclass, field
  4. from ipaddress import ip_address
  5. from typing import Optional
  6. import requests
  7. import torch
  8. import wandb
  9. from torch_optimizer import Lamb
  10. from transformers import AlbertConfig, AlbertForPreTraining, HfArgumentParser, get_linear_schedule_with_warmup
  11. import hivemind
  12. from hivemind.optim.state_averager import TrainingStateAverager
  13. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  14. import utils
  15. from arguments import AveragerArguments, BaseTrainingArguments, OptimizerArguments
  16. use_hivemind_log_handler("in_root_logger")
  17. logger = get_logger(__name__)
  18. @dataclass
  19. class TrainingMonitorArguments(BaseTrainingArguments):
  20. """
  21. Note: You might want to have several initial peers so that if one dies,
  22. new workers still can join the collaboration via alive initial peers' addresses.
  23. Specify initial_peers argument for that purpose
  24. """
  25. use_google_dns: bool = field(
  26. default=False,
  27. metadata={
  28. "help": "Use Google DNS to determine the public IP address of this machine (and add it to --announce_maddrs)"
  29. },
  30. )
  31. refresh_period: float = field(default=30, metadata={"help": "Period (in seconds) for fetching the keys from DHT"})
  32. wandb_project: Optional[str] = field(
  33. default=None, metadata={"help": "Name of Weights & Biases project to report the training progress to"}
  34. )
  35. store_checkpoints: bool = field(default=True, metadata={"help": "If False, disables CheckpointHandler altogether"})
  36. save_checkpoint_step_interval: int = field(
  37. default=5, metadata={"help": "Frequency (in steps) of fetching and saving state from peers"}
  38. )
  39. model_config_path: str = field(
  40. default="https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
  41. metadata={"help": "Path to the model config"},
  42. )
  43. repo_path: Optional[str] = field(
  44. default=None, metadata={"help": "Path to local repository to store the model and optimizer states"}
  45. )
  46. repo_url: Optional[str] = field(
  47. default=None, metadata={"help": "URL of Hugging Face Hub repository to upload the model and optimizer states"}
  48. )
  49. upload_interval: Optional[float] = field(
  50. default=None, metadata={"help": "Frequency (in seconds) of uploading the model to Hub"}
  51. )
  52. class CheckpointHandler:
  53. def __init__(
  54. self,
  55. monitor_args: TrainingMonitorArguments,
  56. optimizer_args: OptimizerArguments,
  57. averager_args: AveragerArguments,
  58. dht: hivemind.DHT,
  59. ):
  60. self.save_checkpoint_step_interval = monitor_args.save_checkpoint_step_interval
  61. self.repo_path = monitor_args.repo_path
  62. self.repo_url = monitor_args.repo_url
  63. self.upload_interval = monitor_args.upload_interval
  64. self.previous_step = -1
  65. config = AlbertConfig.from_pretrained(monitor_args.model_config_path)
  66. self.model = AlbertForPreTraining(config)
  67. no_decay = ["bias", "LayerNorm.weight"]
  68. optimizer_grouped_parameters = [
  69. {
  70. "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
  71. "weight_decay": 0.01,
  72. },
  73. {
  74. "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
  75. "weight_decay": 0.0,
  76. },
  77. ]
  78. opt = Lamb(
  79. optimizer_grouped_parameters,
  80. lr=0.00176,
  81. weight_decay=0.01,
  82. clamp_value=10000.0,
  83. debias=True,
  84. )
  85. self.state_averager = TrainingStateAverager(
  86. dht=dht,
  87. optimizer=opt,
  88. scheduler=get_linear_schedule_with_warmup(opt, num_warmup_steps=5000, num_training_steps=125_000),
  89. prefix=f"{run_id}_state_averager",
  90. state_compression=hivemind.Float16Compression(),
  91. bandwidth=optimizer_args.bandwidth,
  92. client_mode=optimizer_args.client_mode,
  93. start=True,
  94. **asdict(averager_args),
  95. )
  96. self.previous_timestamp = time.time()
  97. def is_time_to_save_state(self, cur_step):
  98. if self.save_checkpoint_step_interval is None:
  99. return False
  100. elif cur_step - self.previous_step >= self.save_checkpoint_step_interval:
  101. return True
  102. else:
  103. return False
  104. def save_state(self, cur_step):
  105. logger.info("Saving state from peers")
  106. self.state_averager.load_state_from_peers()
  107. self.previous_step = cur_step
  108. def is_time_to_upload(self):
  109. if self.repo_path is None:
  110. return False
  111. elif time.time() - self.previous_timestamp >= self.upload_interval:
  112. return True
  113. else:
  114. return False
  115. def upload_checkpoint(self, current_loss):
  116. logger.info("Saving optimizer")
  117. torch.save(self.state_averager.optimizer.state_dict(), f"{self.repo_path}/optimizer_state.pt")
  118. self.previous_timestamp = time.time()
  119. logger.info("Started uploading to Model Hub")
  120. self.model.push_to_hub(
  121. repo_name=self.repo_path,
  122. repo_url=self.repo_url,
  123. commit_message=f"Step #{current_step}, loss {current_loss:.3f}",
  124. )
  125. logger.info("Finished uploading to Model Hub")
  126. if __name__ == "__main__":
  127. parser = HfArgumentParser((TrainingMonitorArguments, OptimizerArguments, AveragerArguments))
  128. monitor_args, optimizer_args, averager_args = parser.parse_args_into_dataclasses()
  129. if monitor_args.use_google_dns:
  130. request = requests.get("https://api.ipify.org")
  131. request.raise_for_status()
  132. address = request.text
  133. logger.info(f"Received public IP address of this machine: {address}")
  134. version = ip_address(address).version
  135. monitor_args.announce_maddrs += [f"/ip{version}/{address}/tcp/0"]
  136. run_id = monitor_args.run_id
  137. validators, local_public_key = utils.make_validators(run_id)
  138. dht = hivemind.DHT(
  139. start=True,
  140. initial_peers=monitor_args.initial_peers,
  141. record_validators=validators,
  142. use_ipfs=monitor_args.use_ipfs,
  143. host_maddrs=monitor_args.host_maddrs,
  144. announce_maddrs=monitor_args.announce_maddrs,
  145. identity_path=monitor_args.identity_path,
  146. )
  147. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=monitor_args.use_ipfs)
  148. if monitor_args.wandb_project is not None:
  149. wandb.init(project=monitor_args.wandb_project)
  150. current_step = 0
  151. if monitor_args.store_checkpoints:
  152. checkpoint_handler = CheckpointHandler(monitor_args, optimizer_args, averager_args, dht)
  153. while True:
  154. metrics_dict = dht.get(run_id + "_metrics", latest=True)
  155. if metrics_dict is not None:
  156. metrics_dict = metrics_dict.value
  157. metrics = [utils.LocalMetrics.parse_obj(metrics_dict[peer].value) for peer in metrics_dict]
  158. latest_step = max(item.step for item in metrics)
  159. if latest_step != current_step:
  160. logger.debug(f"Got metrics from {len(metrics)} peers")
  161. for i, metrics_for_peer in enumerate(metrics):
  162. logger.debug(f"{i} peer {metrics_for_peer}")
  163. current_step = latest_step
  164. alive_peers = 0
  165. sum_loss = 0
  166. num_samples = 0
  167. sum_perf = 0
  168. sum_mini_steps = 0
  169. for item in metrics:
  170. sum_loss += item.loss
  171. alive_peers += 1
  172. sum_perf += item.samples_per_second
  173. num_samples += item.samples_accumulated
  174. sum_mini_steps += item.mini_steps
  175. current_loss = sum_loss / sum_mini_steps
  176. logger.info(f"Step #{current_step}\tloss = {current_loss:.5f}")
  177. if monitor_args.wandb_project is not None:
  178. wandb.log(
  179. {
  180. "loss": current_loss,
  181. "alive peers": alive_peers,
  182. "samples": num_samples,
  183. "performance": sum_perf,
  184. "step": latest_step,
  185. }
  186. )
  187. if monitor_args.store_checkpoints:
  188. if checkpoint_handler.is_time_to_save_state(current_step):
  189. checkpoint_handler.save_state(current_step)
  190. if checkpoint_handler.is_time_to_upload():
  191. checkpoint_handler.upload_checkpoint(current_loss)
  192. logger.debug("Peer is still alive...")
  193. time.sleep(monitor_args.refresh_period)