run_trainer.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. #!/usr/bin/env python
  2. import logging
  3. import os
  4. from dataclasses import asdict
  5. from pathlib import Path
  6. from typing import Dict, Any
  7. import torch
  8. import transformers
  9. from datasets import load_from_disk
  10. from torch.utils.data import DataLoader
  11. from transformers import (set_seed, HfArgumentParser, TrainingArguments,
  12. DataCollatorForLanguageModeling, AlbertTokenizerFast, AlbertConfig, AlbertForPreTraining)
  13. from transformers.optimization import get_linear_schedule_with_warmup
  14. from transformers.trainer_utils import is_main_process
  15. from transformers.trainer import Trainer
  16. from torch_optimizer import Lamb
  17. import hivemind
  18. from arguments import CollaborationArguments, DatasetArguments, AlbertTrainingArguments
  19. import metrics_utils
  20. logger = logging.getLogger(__name__)
  21. LRSchedulerBase = getattr(torch.optim.lr_scheduler, '_LRScheduler', None)
  22. def setup_logging(training_args):
  23. logging.basicConfig(
  24. format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
  25. datefmt="%m/%d/%Y %H:%M:%S",
  26. level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
  27. )
  28. # Log on each process the small summary:
  29. logger.warning(
  30. f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
  31. + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
  32. )
  33. # Set the verbosity to info of the Transformers logger (on main process only):
  34. if is_main_process(training_args.local_rank):
  35. transformers.utils.logging.set_verbosity_info()
  36. transformers.utils.logging.enable_default_handler()
  37. transformers.utils.logging.enable_explicit_format()
  38. logger.info("Training/evaluation parameters %s", training_args)
  39. def get_model(training_args, config, tokenizer):
  40. # Find latest checkpoint in output_dir
  41. output_dir = Path(training_args.output_dir)
  42. logger.info(f'Checkpoint dir {output_dir}, contents {list(output_dir.glob("checkpoint*"))}')
  43. latest_checkpoint_dir = max(output_dir.glob('checkpoint*'), default=None, key=os.path.getctime)
  44. if latest_checkpoint_dir is not None:
  45. logger.info(f'Loading model from {latest_checkpoint_dir}')
  46. model = AlbertForPreTraining.from_pretrained(latest_checkpoint_dir)
  47. else:
  48. logger.info(f'Training from scratch')
  49. model = AlbertForPreTraining(config)
  50. model.resize_token_embeddings(len(tokenizer))
  51. return model
  52. def get_optimizer_and_scheduler(training_args, model):
  53. no_decay = ["bias", "LayerNorm.weight"]
  54. optimizer_grouped_parameters = [
  55. {
  56. "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
  57. "weight_decay": training_args.weight_decay,
  58. },
  59. {
  60. "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
  61. "weight_decay": 0.0,
  62. },
  63. ]
  64. opt = Lamb(
  65. optimizer_grouped_parameters,
  66. lr=training_args.learning_rate,
  67. betas=(training_args.adam_beta1, training_args.adam_beta2),
  68. eps=training_args.adam_epsilon,
  69. weight_decay=training_args.weight_decay,
  70. clamp_value=training_args.clamp_value,
  71. debias=True,
  72. )
  73. scheduler = get_linear_schedule_with_warmup(
  74. opt,
  75. num_warmup_steps=training_args.warmup_steps,
  76. num_training_steps=training_args.max_steps
  77. )
  78. return opt, scheduler
  79. class CollaborativeCallback(transformers.TrainerCallback):
  80. def __init__(self, dht: hivemind.DHT, optimizer: hivemind.CollaborativeOptimizer,
  81. model: torch.nn.Module, local_public_key: bytes, statistics_expiration: float):
  82. super().__init__()
  83. self.model = model
  84. self.dht, self.collaborative_optimizer = dht, optimizer
  85. self.local_public_key = local_public_key
  86. self.statistics_expiration = statistics_expiration
  87. self.last_reported_collaboration_step = -1
  88. self.previous_state = self.get_current_state()
  89. self.samples = 0
  90. self.steps = 0
  91. self.loss = 0
  92. self.total_samples_processed = 0
  93. def on_train_begin(self, args: TrainingArguments, state: transformers.TrainerState,
  94. control: transformers.TrainerControl, **kwargs):
  95. logger.warning('Loading state from peers')
  96. self.collaborative_optimizer.load_state_from_peers()
  97. def on_step_end(self, args: TrainingArguments, state: transformers.TrainerState,
  98. control: transformers.TrainerControl, **kwargs):
  99. control.should_log = True
  100. if not self.params_are_finite():
  101. self.load_from_state(self.previous_state)
  102. return control
  103. self.previous_state = self.get_current_state()
  104. if state.log_history:
  105. self.loss += state.log_history[-1]['loss']
  106. self.steps += 1
  107. if self.collaborative_optimizer.local_step != self.last_reported_collaboration_step:
  108. self.last_reported_collaboration_step = self.collaborative_optimizer.local_step
  109. self.total_samples_processed += self.samples
  110. samples_per_second = self.collaborative_optimizer.performance_ema.samples_per_second
  111. statistics = metrics_utils.LocalMetrics(
  112. step=self.collaborative_optimizer.local_step,
  113. samples_per_second=samples_per_second,
  114. samples_accumulated=self.samples,
  115. loss=self.loss,
  116. mini_steps=self.steps)
  117. logger.info(f"Step {self.collaborative_optimizer.local_step}")
  118. logger.info(f"Your current contribution: {self.total_samples_processed} samples")
  119. if self.steps:
  120. logger.info(f"Loss of your model: {self.loss/self.steps}")
  121. self.loss = 0
  122. self.steps = 0
  123. self.dht.store(key=self.collaborative_optimizer.prefix + "_metrics",
  124. subkey=self.local_public_key, value=statistics.dict(),
  125. expiration_time=hivemind.get_dht_time() + self.statistics_expiration,
  126. return_future=True)
  127. self.samples = self.collaborative_optimizer.local_samples_accumulated
  128. return control
  129. @torch.no_grad()
  130. def get_current_state(self) -> Dict[str, Any]:
  131. return {
  132. 'model': self.model.state_dict(),
  133. 'opt': self.collaborative_optimizer.opt.state_dict()
  134. }
  135. @torch.no_grad()
  136. def load_from_state(self, state):
  137. self.model.load_state_dict(state['model'])
  138. self.collaborative_optimizer.opt.load_state_dict(state['opt'])
  139. @torch.no_grad()
  140. def params_are_finite(self):
  141. for param in self.model.parameters():
  142. if not torch.all(torch.isfinite(param)):
  143. return False
  144. return True
  145. class NoOpScheduler(LRSchedulerBase):
  146. """ Dummy scheduler for transformers.Trainer. The real scheduler is defined in CollaborativeOptimizer.scheduler """
  147. def get_lr(self):
  148. return [group['lr'] for group in self.optimizer.param_groups]
  149. def print_lr(self, *args, **kwargs):
  150. if self.optimizer.scheduler:
  151. return self.optimizer.scheduler.print_lr(*args, **kwargs)
  152. def step(self):
  153. logger.debug("Called NoOpScheduler.step")
  154. self._last_lr = self.get_lr()
  155. def state_dict(self):
  156. return {}
  157. def load_state_dict(self, *args, **kwargs):
  158. logger.debug("Called NoOpScheduler.load_state_dict")
  159. def main():
  160. parser = HfArgumentParser((AlbertTrainingArguments, DatasetArguments, CollaborationArguments))
  161. training_args, dataset_args, collaboration_args = parser.parse_args_into_dataclasses()
  162. logger.info(f"Found {len(collaboration_args.initial_peers)} initial peers: {collaboration_args.initial_peers}")
  163. if len(collaboration_args.initial_peers) == 0:
  164. raise ValueError("Please specify at least one network endpoint in initial peers.")
  165. collaboration_args_dict = asdict(collaboration_args)
  166. setup_logging(training_args)
  167. # Set seed before initializing model.
  168. set_seed(training_args.seed)
  169. config = AlbertConfig.from_pretrained(dataset_args.config_path, cache_dir=dataset_args.cache_dir)
  170. tokenizer = AlbertTokenizerFast.from_pretrained(dataset_args.tokenizer_path, cache_dir=dataset_args.cache_dir)
  171. model = get_model(training_args, config, tokenizer)
  172. model.to(training_args.device)
  173. tokenized_datasets = load_from_disk(Path(dataset_args.dataset_path))
  174. # This data collator will take care of randomly masking the tokens.
  175. data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer)
  176. opt, scheduler = get_optimizer_and_scheduler(training_args, model)
  177. validators, local_public_key = metrics_utils.make_validators(
  178. collaboration_args_dict['experiment_prefix'])
  179. dht = hivemind.DHT(
  180. start=True, initial_peers=collaboration_args_dict.pop('initial_peers'),
  181. listen=not collaboration_args_dict['client_mode'],
  182. listen_on=collaboration_args_dict.pop('dht_listen_on'),
  183. endpoint=collaboration_args_dict.pop('endpoint'), record_validators=validators)
  184. total_batch_size_per_step = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
  185. statistics_expiration = collaboration_args_dict.pop('statistics_expiration')
  186. adjusted_target_batch_size = collaboration_args_dict.pop('target_batch_size') \
  187. - collaboration_args_dict.pop('batch_size_lead')
  188. collaborative_optimizer = hivemind.CollaborativeOptimizer(
  189. opt=opt, dht=dht, scheduler=scheduler, prefix=collaboration_args_dict.pop('experiment_prefix'),
  190. compression_type=hivemind.utils.CompressionType.Value(collaboration_args_dict.pop('compression')),
  191. batch_size_per_step=total_batch_size_per_step, throughput=collaboration_args_dict.pop('bandwidth'),
  192. target_batch_size=adjusted_target_batch_size, client_mode=collaboration_args_dict.pop('client_mode'),
  193. verbose=True, start=True, **collaboration_args_dict
  194. )
  195. class TrainerWithIndependentShuffling(Trainer):
  196. def get_train_dataloader(self) -> DataLoader:
  197. """ Shuffle data independently for each peer to avoid duplicating batches [important for quality] """
  198. torch.manual_seed(hash(local_public_key))
  199. return super().get_train_dataloader()
  200. trainer = TrainerWithIndependentShuffling(
  201. model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator,
  202. train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
  203. eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
  204. optimizers=(collaborative_optimizer, NoOpScheduler(collaborative_optimizer)),
  205. callbacks=[CollaborativeCallback(
  206. dht, collaborative_optimizer, model, local_public_key, statistics_expiration)]
  207. )
  208. trainer.remove_callback(transformers.trainer_callback.PrinterCallback)
  209. trainer.remove_callback(transformers.trainer_callback.ProgressCallback)
  210. # Training
  211. if training_args.do_train:
  212. latest_checkpoint_dir = max(
  213. Path(training_args.output_dir).glob('checkpoint*'),
  214. default=None,
  215. key=os.path.getctime
  216. )
  217. trainer.train(model_path=latest_checkpoint_dir)
  218. if __name__ == "__main__":
  219. main()