run_server.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. from contextlib import contextmanager
  2. import multiprocessing as mp
  3. import torch
  4. import tesseract
  5. from .layers import name_to_block
  6. def make_dummy_server(host='0.0.0.0', port=None, num_experts=1, expert_cls='ffn', hidden_dim=1024, num_handlers=None,
  7. expert_prefix='expert.', expert_offset=0, max_batch_size=16384, device='cpu', no_optimizer=False,
  8. no_network=False, initial_peers=(), network_port=None, verbose=True, start=True, **kwargs
  9. ) -> tesseract.TesseractServer:
  10. """ A context manager that creates server in a background thread, awaits .ready on entry and shutdowns on exit """
  11. if verbose and len(kwargs) != 0:
  12. print("Ignored kwargs:", kwargs)
  13. assert expert_cls in name_to_block
  14. num_handlers = num_handlers if num_handlers is not None else num_experts * 8
  15. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  16. # initialize network
  17. network = None
  18. if not no_network:
  19. network = tesseract.TesseractNetwork(
  20. *initial_peers, port=network_port or tesseract.find_open_port(), start=True)
  21. if verbose:
  22. print("Parsed initial peers:", initial_peers)
  23. print(f"Running network node on port {network.port}")
  24. # initialize experts
  25. experts = {}
  26. for i in range(num_experts):
  27. expert = torch.jit.script(name_to_block[expert_cls](hidden_dim))
  28. opt = torch.optim.SGD(expert.parameters(), 0.0) if no_optimizer else torch.optim.Adam(expert.parameters())
  29. expert_uid = f'{expert_prefix}{i + expert_offset}'
  30. experts[expert_uid] = tesseract.ExpertBackend(name=expert_uid, expert=expert, opt=opt,
  31. args_schema=(tesseract.BatchTensorProto(hidden_dim),),
  32. outputs_schema=tesseract.BatchTensorProto(hidden_dim),
  33. max_batch_size=max_batch_size,
  34. )
  35. # actually start server
  36. server = tesseract.TesseractServer(
  37. network, experts, addr=host, port=port or tesseract.find_open_port(),
  38. conn_handler_processes=num_handlers, device=device)
  39. if start:
  40. server.run_in_background(await_ready=True)
  41. if verbose:
  42. print(f"Server started at {server.addr}:{server.port}")
  43. print(f"Got {num_experts} active experts of type {expert_cls}: {list(experts.keys())}")
  44. return server
  45. @contextmanager
  46. def background_server(*args, verbose=True, **kwargs):
  47. """ Runs server in a background process and returns a reference to it. """
  48. recv_addr, send_addr = mp.Pipe(duplex=True)
  49. trigger_shutdown = mp.Event()
  50. def server_runner():
  51. try:
  52. server = make_dummy_server(*args, verbose=verbose, start=True, **kwargs)
  53. send_addr.send((server.addr, server.port))
  54. trigger_shutdown.wait()
  55. finally:
  56. if verbose:
  57. print("Shutting down server...")
  58. trigger_shutdown.set() # if server failed internally, set the shutdown trigger anyway
  59. server.shutdown()
  60. if verbose:
  61. print("Server shut down successfully.")
  62. try:
  63. runner = mp.Process(target=server_runner)
  64. runner.start()
  65. yield recv_addr.recv() # yield tuple(hostname, port)
  66. finally:
  67. trigger_shutdown.set()
  68. runner.join()
  69. if __name__ == '__main__':
  70. with background_server() as (host, port):
  71. mp.Event().wait() # aka fall asleep forever