optim.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. import math
  2. import torch
  3. from torch.optim.optimizer import Optimizer
  4. import logging
  5. __all__ = ('Lamb',)
  6. logger = logging.getLogger(__name__)
  7. class Lamb(Optimizer):
  8. def __init__(
  9. self,
  10. params,
  11. lr: float = 1e-3,
  12. betas = (0.9, 0.999),
  13. eps: float = 1e-6,
  14. weight_decay: float = 0,
  15. clamp_value: float = 10,
  16. adam: bool = False,
  17. debias: bool = False,
  18. ) -> None:
  19. if lr <= 0.0:
  20. raise ValueError('Invalid learning rate: {}'.format(lr))
  21. if eps < 0.0:
  22. raise ValueError('Invalid epsilon value: {}'.format(eps))
  23. if not 0.0 <= betas[0] < 1.0:
  24. raise ValueError(
  25. 'Invalid beta parameter at index 0: {}'.format(betas[0])
  26. )
  27. if not 0.0 <= betas[1] < 1.0:
  28. raise ValueError(
  29. 'Invalid beta parameter at index 1: {}'.format(betas[1])
  30. )
  31. if weight_decay < 0:
  32. raise ValueError(
  33. 'Invalid weight_decay value: {}'.format(weight_decay)
  34. )
  35. if clamp_value < 0.0:
  36. raise ValueError('Invalid clamp value: {}'.format(clamp_value))
  37. defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
  38. self.clamp_value = clamp_value
  39. self.adam = adam
  40. self.debias = debias
  41. super(Lamb, self).__init__(params, defaults)
  42. def step(self, closure = None):
  43. r"""Performs a single optimization step.
  44. Arguments:
  45. closure: A closure that reevaluates the model and returns the loss.
  46. """
  47. loss = None
  48. if closure is not None:
  49. loss = closure()
  50. logger.info("UUU")
  51. for group in self.param_groups:
  52. for p in group['params']:
  53. if p.grad is None:
  54. continue
  55. grad = p.grad.data
  56. logger.info("00")
  57. if grad.is_sparse:
  58. msg = (
  59. 'Lamb does not support sparse gradients, '
  60. 'please consider SparseAdam instead'
  61. )
  62. raise RuntimeError(msg)
  63. logger.info("1")
  64. state = self.state[p]
  65. logger.info("2")
  66. # State initialization
  67. if len(state) == 0:
  68. state['step'] = 0
  69. # Exponential moving average of gradient values
  70. state['exp_avg'] = torch.zeros_like(
  71. p, )
  72. # Exponential moving average of squared gradient values
  73. state['exp_avg_sq'] = torch.zeros_like(p)
  74. logger.info("3")
  75. exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
  76. beta1, beta2 = group['betas']
  77. logger.info("4")
  78. state['step'] += 1
  79. # Decay the first and second moment running average coefficient
  80. # m_t
  81. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
  82. # v_t
  83. logger.info("5")
  84. exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
  85. logger.info("6")
  86. # Apply bias to lr to avoid broadcast.
  87. step_size = group['lr']
  88. weight_norm = torch.norm(p.data).clamp(0, self.clamp_value)
  89. logger.info("9")
  90. adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
  91. logger.info("10")
  92. adam_step.add_(p.data, alpha=group['weight_decay'])
  93. logger.info("11")
  94. adam_norm = torch.norm(adam_step).clamp_min(0.001)
  95. logger.info("12")
  96. trust_ratio = weight_norm / adam_norm
  97. state['weight_norm'] = weight_norm
  98. state['adam_norm'] = adam_norm
  99. state['trust_ratio'] = trust_ratio
  100. logger.info("13")
  101. if self.adam:
  102. trust_ratio = 1
  103. p.data.add_(adam_step, alpha=-step_size * trust_ratio)
  104. return loss