test_averaging.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. import random
  2. import numpy as np
  3. import pytest
  4. import torch
  5. import hivemind
  6. import hivemind.averaging.averager
  7. from hivemind.averaging.allreduce import AveragingMode
  8. from hivemind.averaging.key_manager import GroupKeyManager
  9. from hivemind.averaging.load_balancing import load_balance_peers
  10. from hivemind.p2p import PeerID
  11. from hivemind.proto.runtime_pb2 import CompressionType
  12. @pytest.mark.forked
  13. @pytest.mark.asyncio
  14. async def test_key_manager():
  15. localhvost = PeerID(b"localhvost")
  16. localhvost2 = PeerID(b"localhvost2")
  17. key_manager = GroupKeyManager(
  18. hivemind.DHT(start=True),
  19. endpoint=localhvost,
  20. prefix="test_averaging",
  21. initial_group_bits="10110",
  22. target_group_size=2,
  23. )
  24. t = hivemind.get_dht_time()
  25. key = key_manager.current_key
  26. await key_manager.declare_averager(key, localhvost, expiration_time=t + 60)
  27. await key_manager.declare_averager(key, localhvost2, expiration_time=t + 61)
  28. q1 = await key_manager.get_averagers(key, only_active=True)
  29. await key_manager.declare_averager(key, localhvost, expiration_time=t + 66)
  30. q2 = await key_manager.get_averagers(key, only_active=True)
  31. await key_manager.declare_averager(key, localhvost2, expiration_time=t + 61, looking_for_group=False)
  32. q3 = await key_manager.get_averagers(key, only_active=True)
  33. q4 = await key_manager.get_averagers(key, only_active=False)
  34. q5 = await key_manager.get_averagers("nonexistent_key.0b0101", only_active=False)
  35. assert len(q1) == 2 and (localhvost, t + 60) in q1 and (localhvost2, t + 61) in q1
  36. assert len(q2) == 2 and (localhvost, t + 66) in q2 and (localhvost2, t + 61) in q2
  37. assert len(q3) == 1 and (localhvost, t + 66) in q3
  38. assert len(q4) == 2 and (localhvost, t + 66) in q4 and (localhvost2, t + 61) in q2
  39. assert len(q5) == 0
  40. def _test_allreduce_once(n_clients, n_aux):
  41. dht = hivemind.DHT(start=True)
  42. n_peers = 4
  43. modes = (
  44. [AveragingMode.CLIENT] * n_clients
  45. + [AveragingMode.AUX] * n_aux
  46. + [AveragingMode.NODE] * (n_peers - n_clients - n_aux)
  47. )
  48. random.shuffle(modes)
  49. tensors1 = [torch.randn(123), torch.zeros(3)]
  50. tensors2 = [torch.rand(123), torch.ones(3)]
  51. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  52. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  53. peer_tensors = [tensors1, tensors2, tensors3, tensors4]
  54. reference = [
  55. sum(tensors[i] for tensors, mode in zip(peer_tensors, modes) if mode != AveragingMode.AUX)
  56. / max(1, n_peers - n_aux)
  57. for i in range(len(tensors1))
  58. ]
  59. averagers = [
  60. hivemind.averaging.DecentralizedAverager(
  61. tensors,
  62. dht=dht,
  63. target_group_size=4,
  64. averaging_expiration=15,
  65. prefix="mygroup",
  66. client_mode=mode == AveragingMode.CLIENT,
  67. auxiliary=mode == AveragingMode.AUX,
  68. start=True,
  69. )
  70. for tensors, mode in zip(peer_tensors, modes)
  71. ]
  72. futures = []
  73. for averager in averagers:
  74. futures.append(averager.step(wait=False))
  75. for future in futures:
  76. result = future.result()
  77. for averager in averagers:
  78. assert averager.endpoint in result
  79. for averager in averagers:
  80. if averager.mode != AveragingMode.AUX:
  81. with averager.get_tensors() as averaged_tensors:
  82. for ref, our in zip(reference, averaged_tensors):
  83. assert torch.allclose(ref, our, atol=1e-6)
  84. for averager in averagers:
  85. averager.shutdown()
  86. dht.shutdown()
  87. @pytest.mark.forked
  88. @pytest.mark.parametrize("n_clients", [0, 1, 2])
  89. @pytest.mark.parametrize("n_aux", [0, 1, 2])
  90. def test_allreduce_once(n_clients, n_aux):
  91. _test_allreduce_once(n_clients, n_aux)
  92. @pytest.mark.forked
  93. @pytest.mark.parametrize("n_clients, n_aux", [(0, 4), (1, 3), (0, 3)])
  94. def test_allreduce_once_edge_cases(n_clients, n_aux):
  95. _test_allreduce_once(n_clients, n_aux)
  96. @pytest.mark.forked
  97. def test_allreduce_weighted(n_client_mode_peers: int = 2):
  98. dht = hivemind.DHT(start=True)
  99. n_peers = 4
  100. client_modes = [True] * n_client_mode_peers + [False] * (n_peers - n_client_mode_peers)
  101. random.shuffle(client_modes)
  102. tensors1 = [torch.randn(123), torch.zeros(3)]
  103. tensors2 = [torch.rand(123), torch.ones(3)]
  104. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  105. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  106. averagers = [
  107. hivemind.averaging.DecentralizedAverager(
  108. tensors,
  109. dht=dht,
  110. target_group_size=4,
  111. averaging_expiration=15,
  112. prefix="mygroup",
  113. client_mode=client_mode,
  114. start=True,
  115. )
  116. for tensors, client_mode in zip([tensors1, tensors2, tensors3, tensors4], client_modes)
  117. ]
  118. weights = list(map(float, np.random.rand(len(averagers)) * 10 + 0.01))
  119. reference = [
  120. (tensors1[i] * weights[0] + tensors2[i] * weights[1] + tensors3[i] * weights[2] + tensors4[i] * weights[3])
  121. / sum(weights)
  122. for i in range(len(tensors1))
  123. ]
  124. futures = []
  125. for averager, weight in zip(averagers, weights):
  126. futures.append(averager.step(weight=weight, wait=False))
  127. for future in futures:
  128. future.result()
  129. for future, averager in zip(futures, averagers):
  130. with averager.get_tensors() as averaged_tensors:
  131. for ref, our in zip(reference, averaged_tensors):
  132. assert torch.allclose(ref, our, atol=1e-6)
  133. for averager in averagers:
  134. averager.shutdown()
  135. dht.shutdown()
  136. @pytest.mark.forked
  137. def test_allreduce_compression():
  138. """this test ensures that compression works correctly when multiple tensors have different compression types"""
  139. dht = hivemind.DHT(start=True)
  140. tensors1 = [torch.linspace(0, 500, 1000) ** 0.5, torch.randn(1000)]
  141. tensors2 = [torch.linspace(300, 800, 1000) ** 0.5, torch.randn(1000)]
  142. results = {}
  143. FLOAT16, UINT8 = CompressionType.FLOAT16, CompressionType.UNIFORM_8BIT
  144. for compression_type_pair in [(FLOAT16, FLOAT16), (FLOAT16, UINT8), (UINT8, FLOAT16), (UINT8, UINT8)]:
  145. averager1 = hivemind.averaging.DecentralizedAverager(
  146. [x.clone() for x in tensors1],
  147. dht=dht,
  148. compression_type=compression_type_pair,
  149. client_mode=True,
  150. target_group_size=2,
  151. prefix="mygroup",
  152. start=True,
  153. )
  154. averager2 = hivemind.averaging.DecentralizedAverager(
  155. [x.clone() for x in tensors2],
  156. dht=dht,
  157. compression_type=compression_type_pair,
  158. target_group_size=2,
  159. prefix="mygroup",
  160. start=True,
  161. )
  162. for future in averager1.step(wait=False), averager2.step(wait=False):
  163. future.result()
  164. with averager1.get_tensors() as averaged_tensors:
  165. results[compression_type_pair] = averaged_tensors
  166. assert torch.allclose(results[UINT8, FLOAT16][0], results[UINT8, UINT8][0])
  167. assert torch.allclose(results[UINT8, FLOAT16][1], results[FLOAT16, FLOAT16][1])
  168. assert torch.allclose(results[UINT8, UINT8][1], results[FLOAT16, UINT8][1])
  169. assert torch.allclose(results[FLOAT16, UINT8][0], results[FLOAT16, FLOAT16][0])
  170. assert not torch.allclose(results[UINT8, FLOAT16][1], results[UINT8, UINT8][1])
  171. assert not torch.allclose(results[UINT8, FLOAT16][0], results[FLOAT16, FLOAT16][0])
  172. assert not torch.allclose(results[UINT8, UINT8][0], results[FLOAT16, UINT8][0])
  173. assert not torch.allclose(results[FLOAT16, UINT8][1], results[FLOAT16, FLOAT16][1])
  174. reference = [(tensors1[i] + tensors2[i]) / 2 for i in range(len(tensors1))]
  175. for i in range(2):
  176. assert 0 < torch.mean(torch.square(results[FLOAT16, FLOAT16][i] - reference[i])).item() <= 1e-5
  177. assert 1e-5 < torch.mean(torch.square(results[UINT8, UINT8][i] - reference[i])).item() <= 1e-2
  178. def compute_mean_std(averagers, unbiased=True):
  179. results = []
  180. for averager in averagers:
  181. with averager.get_tensors() as tensors:
  182. results.append([tensor.clone() for tensor in tensors])
  183. results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
  184. means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
  185. stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
  186. return means, stds
  187. @pytest.mark.forked
  188. def test_allreduce_grid():
  189. dht = hivemind.DHT(start=True)
  190. averagers = [
  191. hivemind.averaging.DecentralizedAverager(
  192. averaged_tensors=[torch.randn(3)],
  193. dht=dht,
  194. target_group_size=2,
  195. prefix="mygroup",
  196. initial_group_bits=bin(i // 2)[2:].rjust(2, "0"),
  197. start=True,
  198. )
  199. for i in range(8)
  200. ]
  201. [means0], [stds0] = compute_mean_std(averagers)
  202. assert not torch.allclose(stds0, torch.zeros_like(stds0))
  203. prev_means, prev_stds = means0, stds0
  204. for i in range(5):
  205. step_futures = [averager.step(wait=False) for averager in averagers]
  206. groups = [future.result() for future in step_futures]
  207. [means], [stds] = compute_mean_std(averagers)
  208. assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
  209. assert all(len(group) == 2 for group in groups)
  210. if i <= 2:
  211. assert torch.all(torch.le(stds, prev_stds))
  212. else:
  213. assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
  214. for averager in averagers:
  215. averager.shutdown()
  216. dht.shutdown()
  217. @pytest.mark.forked
  218. def test_allgather():
  219. dht = hivemind.DHT(start=True)
  220. averagers = [
  221. hivemind.averaging.DecentralizedAverager(
  222. [torch.ones(1)],
  223. dht=dht,
  224. target_group_size=4,
  225. averaging_expiration=15,
  226. prefix="mygroup",
  227. initial_group_bits="000",
  228. start=True,
  229. )
  230. for _ in range(8)
  231. ]
  232. futures = []
  233. for i, averager in enumerate(averagers):
  234. futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo="bar")))
  235. assert len(set(repr(sorted(future.result())) for future in futures)) == 2
  236. reference_metadata = {
  237. averager.endpoint: dict(batch_size=123 + i, foo="bar") for i, averager in enumerate(averagers)
  238. }
  239. for future in futures:
  240. gathered = future.result()
  241. assert len(gathered) == 4
  242. for endpoint in gathered:
  243. assert gathered[endpoint] == reference_metadata[endpoint]
  244. for averager in averagers:
  245. averager.shutdown()
  246. dht.shutdown()
  247. def get_cost(vector_size, partitions, bandwidths):
  248. return max(
  249. (vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(bandwidths[i], 1e-9)
  250. for i in range(len(partitions))
  251. )
  252. def check_optimality(vector_size, bandwidths, ref_partitions):
  253. partitions = list(load_balance_peers(vector_size, bandwidths))
  254. assert get_cost(vector_size, partitions, bandwidths) <= get_cost(vector_size, ref_partitions, bandwidths)
  255. @pytest.mark.forked
  256. def test_load_balancing():
  257. check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
  258. check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
  259. check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
  260. check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
  261. check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
  262. check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
  263. assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
  264. assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
  265. assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
  266. assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
  267. assert load_balance_peers(100, (None, None)) == (50, 50)
  268. assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
  269. assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
  270. with pytest.raises(AssertionError):
  271. load_balance_peers(100, (0, 0, 0))
  272. for i in range(10):
  273. vector_size = np.random.randint(1, 1024 ** 3)
  274. num_peers = np.random.randint(1, 256)
  275. scale = 1e-9 + np.random.rand() * 1e5
  276. bandwidths = np.random.rand(num_peers) * scale + 1e-6
  277. min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
  278. assignment = load_balance_peers(vector_size, bandwidths, min_size)
  279. assert np.sum(assignment) == vector_size
  280. assert np.min(assignment) >= 0
  281. @pytest.mark.forked
  282. def test_too_few_peers():
  283. dht = hivemind.DHT(start=True)
  284. averagers = [
  285. hivemind.averaging.DecentralizedAverager(
  286. averaged_tensors=[torch.randn(3)],
  287. dht=dht,
  288. target_group_size=2,
  289. averaging_expiration=1,
  290. request_timeout=0.5,
  291. prefix="mygroup",
  292. initial_group_bits=bin(i)[2:].rjust(3, "0"),
  293. start=True,
  294. )
  295. for i in range(4)
  296. ]
  297. step_futures = [averager.step(wait=False) for averager in averagers]
  298. for future in step_futures:
  299. assert len(future.result()) == 2
  300. for averager in averagers:
  301. averager.shutdown()
  302. dht.shutdown()
  303. @pytest.mark.forked
  304. def test_overcrowded(num_peers=16):
  305. dht = hivemind.DHT(start=True)
  306. averagers = [
  307. hivemind.averaging.DecentralizedAverager(
  308. averaged_tensors=[torch.randn(3)],
  309. dht=dht,
  310. target_group_size=2,
  311. averaging_expiration=1,
  312. request_timeout=0.5,
  313. prefix="mygroup",
  314. initial_group_bits="",
  315. start=True,
  316. )
  317. for _ in range(num_peers)
  318. ]
  319. for t in range(5):
  320. step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
  321. assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
  322. for averager in averagers:
  323. averager.shutdown()
  324. dht.shutdown()
  325. @pytest.mark.forked
  326. def test_load_state_from_peers():
  327. num_calls = 0
  328. super_metadata = dict(x=123)
  329. super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
  330. class TestAverager(hivemind.averaging.DecentralizedAverager):
  331. def get_current_state(self):
  332. """
  333. Get current state and send it to a peer. executed in the host process. Meant to be overriden.
  334. :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
  335. """
  336. nonlocal num_calls, super_metadata, super_tensors
  337. num_calls += 1
  338. return super_metadata, super_tensors
  339. dht_root = hivemind.DHT(start=True)
  340. initial_peers = dht_root.get_visible_maddrs()
  341. dht1 = hivemind.DHT(initial_peers=initial_peers, start=True)
  342. averager1 = TestAverager(
  343. [torch.randn(3), torch.rand(5)],
  344. dht=dht1,
  345. start=True,
  346. prefix="demo-run",
  347. target_group_size=2,
  348. )
  349. dht2 = hivemind.DHT(initial_peers=initial_peers, start=True)
  350. dht2.get("demo-run.all_averagers")
  351. averager2 = TestAverager(
  352. [torch.randn(3), torch.rand(5)],
  353. dht=dht2,
  354. start=True,
  355. prefix="demo-run",
  356. target_group_size=2,
  357. )
  358. assert num_calls == 0
  359. got_metadata, got_tensors = averager2.load_state_from_peers()
  360. assert num_calls == 1
  361. assert got_metadata == super_metadata
  362. assert all(map(torch.allclose, got_tensors, super_tensors))
  363. super_metadata["y"] = 123
  364. super_tensors[1][2] = 9
  365. assert num_calls == 1
  366. assert got_metadata != super_metadata
  367. assert not all(map(torch.allclose, got_tensors, super_tensors))
  368. got_metadata, got_tensors = averager2.load_state_from_peers()
  369. assert num_calls == 2
  370. assert got_metadata == super_metadata
  371. assert all(map(torch.allclose, got_tensors, super_tensors))
  372. averager1.allow_state_sharing = False
  373. assert averager2.load_state_from_peers() is None
  374. averager1.allow_state_sharing = True
  375. got_metadata, got_tensors = averager2.load_state_from_peers()
  376. assert num_calls == 3
  377. assert got_metadata == super_metadata
  378. @pytest.mark.forked
  379. def test_getset_bits():
  380. dht = hivemind.DHT(start=True)
  381. averager = hivemind.averaging.DecentralizedAverager(
  382. [torch.randn(3)],
  383. dht=dht,
  384. start=True,
  385. prefix="test_prefix",
  386. target_group_size=2,
  387. )
  388. averager.set_group_bits("00101011101010")
  389. assert averager.get_group_bits() == "00101011101010"
  390. @pytest.mark.forked
  391. def test_training_averager(n_steps: int = 10, n_dims: int = 16):
  392. torch.manual_seed(42)
  393. dht = hivemind.DHT(start=True)
  394. common_kwargs = {
  395. "dht": dht,
  396. "start": True,
  397. "prefix": "demo-run",
  398. "target_group_size": 2,
  399. }
  400. x1 = torch.randn(n_dims, requires_grad=True)
  401. opt1 = torch.optim.Adam([x1], lr=0.05)
  402. averager1 = hivemind.averaging.TrainingAverager(
  403. opt1, average_gradients=True, average_parameters=True, average_opt_statistics=["exp_avg_sq"], **common_kwargs
  404. )
  405. x2 = torch.randn(n_dims, requires_grad=True)
  406. opt2 = torch.optim.Adam([x2], lr=0.05)
  407. averager2 = hivemind.averaging.TrainingAverager(
  408. opt2, average_gradients=True, average_parameters=True, average_opt_statistics=["exp_avg_sq"], **common_kwargs
  409. )
  410. a = torch.ones(n_dims)
  411. for i in range(n_steps):
  412. opt1.zero_grad()
  413. opt2.zero_grad()
  414. (x1 - a).pow(2).sum().backward()
  415. (x2 - a).pow(2).sum().backward()
  416. opt1.step()
  417. opt2.step()
  418. with torch.no_grad():
  419. x_avg = 0.5 * (x1 + x2)
  420. grad_avg = 0.5 * (x1.grad + x2.grad)
  421. stats_avg = 0.5 * (opt1.state[x1]["exp_avg_sq"] + opt2.state[x2]["exp_avg_sq"])
  422. # we set wait=False in order to prevent deadlock, when averager1 locks and waits for averager2
  423. f1 = averager1.step(wait=False)
  424. f2 = averager2.step(wait=False)
  425. f1.result()
  426. f2.result()
  427. assert torch.allclose(x1, x_avg)
  428. assert torch.allclose(x2, x_avg)
  429. assert torch.allclose(x1.grad, grad_avg)
  430. assert torch.allclose(x2.grad, grad_avg)
  431. assert torch.allclose(opt1.state[x1]["exp_avg_sq"], stats_avg)
  432. assert torch.allclose(opt2.state[x2]["exp_avg_sq"], stats_avg)
  433. averager1.shutdown()
  434. averager2.shutdown()
  435. dht.shutdown()