optim.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. import math
  2. import torch
  3. from torch.optim.optimizer import Optimizer
  4. __all__ = ('Lamb',)
  5. class Lamb(Optimizer):
  6. def __init__(
  7. self,
  8. params,
  9. lr: float = 1e-3,
  10. betas = (0.9, 0.999),
  11. eps: float = 1e-6,
  12. weight_decay: float = 0,
  13. clamp_value: float = 10,
  14. adam: bool = False,
  15. debias: bool = False,
  16. ) -> None:
  17. if lr <= 0.0:
  18. raise ValueError('Invalid learning rate: {}'.format(lr))
  19. if eps < 0.0:
  20. raise ValueError('Invalid epsilon value: {}'.format(eps))
  21. if not 0.0 <= betas[0] < 1.0:
  22. raise ValueError(
  23. 'Invalid beta parameter at index 0: {}'.format(betas[0])
  24. )
  25. if not 0.0 <= betas[1] < 1.0:
  26. raise ValueError(
  27. 'Invalid beta parameter at index 1: {}'.format(betas[1])
  28. )
  29. if weight_decay < 0:
  30. raise ValueError(
  31. 'Invalid weight_decay value: {}'.format(weight_decay)
  32. )
  33. if clamp_value < 0.0:
  34. raise ValueError('Invalid clamp value: {}'.format(clamp_value))
  35. defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
  36. self.clamp_value = clamp_value
  37. self.adam = adam
  38. self.debias = debias
  39. super(Lamb, self).__init__(params, defaults)
  40. def step(self, closure = None):
  41. r"""Performs a single optimization step.
  42. Arguments:
  43. closure: A closure that reevaluates the model and returns the loss.
  44. """
  45. loss = None
  46. if closure is not None:
  47. loss = closure()
  48. for group in self.param_groups:
  49. for p in group['params']:
  50. if p.grad is None:
  51. continue
  52. grad = p.grad.data
  53. if grad.is_sparse:
  54. msg = (
  55. 'Lamb does not support sparse gradients, '
  56. 'please consider SparseAdam instead'
  57. )
  58. raise RuntimeError(msg)
  59. state = self.state[p]
  60. # State initialization
  61. if len(state) == 0:
  62. state['step'] = 0
  63. # Exponential moving average of gradient values
  64. state['exp_avg'] = torch.zeros_like(
  65. p, )
  66. # Exponential moving average of squared gradient values
  67. state['exp_avg_sq'] = torch.zeros_like(p)
  68. exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
  69. beta1, beta2 = group['betas']
  70. state['step'] += 1
  71. # Decay the first and second moment running average coefficient
  72. # m_t
  73. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
  74. # v_t
  75. exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
  76. # Paper v3 does not use debiasing.
  77. if self.debias:
  78. bias_correction = math.sqrt(1 - beta2 ** state['step'])
  79. bias_correction /= 1 - beta1 ** state['step']
  80. else:
  81. bias_correction = 1
  82. # Apply bias to lr to avoid broadcast.
  83. step_size = group['lr'] * bias_correction
  84. weight_norm = torch.norm(p.data).clamp(0, self.clamp_value)
  85. adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
  86. adam_step.add_(p.data, alpha=group['weight_decay'])
  87. adam_norm = torch.norm(adam_step).clamp_min(0.001)
  88. trust_ratio = weight_norm / adam_norm
  89. state['weight_norm'] = weight_norm
  90. state['adam_norm'] = adam_norm
  91. state['trust_ratio'] = trust_ratio
  92. if self.adam:
  93. trust_ratio = 1
  94. p.data.add_(adam_step, alpha=-step_size * trust_ratio)
  95. return loss