run_trainer.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. #!/usr/bin/env python
  2. import logging
  3. import os
  4. import pickle
  5. from dataclasses import asdict
  6. from pathlib import Path
  7. import torch
  8. import transformers
  9. from datasets import load_from_disk
  10. from torch.utils.data import DataLoader
  11. from torch_optimizer import Lamb
  12. from transformers import DataCollatorForLanguageModeling, HfArgumentParser, TrainingArguments, set_seed
  13. from transformers.models.albert import AlbertConfig, AlbertForPreTraining, AlbertTokenizerFast
  14. from transformers.optimization import get_linear_schedule_with_warmup
  15. from transformers.trainer import Trainer
  16. from transformers.trainer_utils import is_main_process
  17. import hivemind
  18. from hivemind.utils.compression import CompressionType
  19. import utils
  20. from arguments import AlbertTrainingArguments, AveragerArguments, CollaborationArguments, DatasetArguments
  21. logger = logging.getLogger(__name__)
  22. LRSchedulerBase = getattr(torch.optim.lr_scheduler, "_LRScheduler", None)
  23. def setup_logging(training_args):
  24. logging.basicConfig(
  25. format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
  26. datefmt="%m/%d/%Y %H:%M:%S",
  27. level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
  28. )
  29. # Log on each process the small summary:
  30. logger.warning(
  31. f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
  32. + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
  33. )
  34. # Set the verbosity to info of the Transformers logger (on main process only):
  35. if is_main_process(training_args.local_rank):
  36. transformers.utils.logging.set_verbosity_info()
  37. transformers.utils.logging.enable_default_handler()
  38. transformers.utils.logging.enable_explicit_format()
  39. logger.info("Training/evaluation parameters %s", training_args)
  40. def get_model(training_args, config, tokenizer):
  41. # Find latest checkpoint in output_dir
  42. output_dir = Path(training_args.output_dir)
  43. logger.info(f'Checkpoint dir {output_dir}, contents {list(output_dir.glob("checkpoint*"))}')
  44. latest_checkpoint_dir = max(output_dir.glob("checkpoint*"), default=None, key=os.path.getctime)
  45. if latest_checkpoint_dir is not None:
  46. logger.info(f"Loading model from {latest_checkpoint_dir}")
  47. model = AlbertForPreTraining.from_pretrained(latest_checkpoint_dir)
  48. else:
  49. logger.info(f"Training from scratch")
  50. model = AlbertForPreTraining(config)
  51. model.resize_token_embeddings(len(tokenizer))
  52. return model
  53. def get_optimizer_and_scheduler(training_args, model):
  54. no_decay = ["bias", "LayerNorm.weight"]
  55. optimizer_grouped_parameters = [
  56. {
  57. "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
  58. "weight_decay": training_args.weight_decay,
  59. },
  60. {
  61. "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
  62. "weight_decay": 0.0,
  63. },
  64. ]
  65. opt = Lamb(
  66. optimizer_grouped_parameters,
  67. lr=training_args.learning_rate,
  68. betas=(training_args.adam_beta1, training_args.adam_beta2),
  69. eps=training_args.adam_epsilon,
  70. weight_decay=training_args.weight_decay,
  71. clamp_value=training_args.clamp_value,
  72. debias=True,
  73. )
  74. scheduler = get_linear_schedule_with_warmup(
  75. opt, num_warmup_steps=training_args.warmup_steps, num_training_steps=training_args.max_steps
  76. )
  77. return opt, scheduler
  78. class CollaborativeCallback(transformers.TrainerCallback):
  79. """
  80. This callback monitors and reports collaborative training progress.
  81. In case of a catastrophic failure, it can also revert training to a backup.
  82. """
  83. def __init__(
  84. self,
  85. dht: hivemind.DHT,
  86. optimizer: hivemind.CollaborativeOptimizer,
  87. model: torch.nn.Module,
  88. local_public_key: bytes,
  89. statistics_expiration: float,
  90. backup_every_steps: int,
  91. ):
  92. super().__init__()
  93. self.model = model
  94. self.dht, self.collaborative_optimizer = dht, optimizer
  95. self.local_public_key = local_public_key
  96. self.statistics_expiration = statistics_expiration
  97. self.last_reported_collaboration_step = -1
  98. self.samples = 0
  99. self.steps = 0
  100. self.loss = 0
  101. self.total_samples_processed = 0
  102. self.backup_every_steps = backup_every_steps
  103. self.latest_backup = self.backup_state()
  104. def on_train_begin(
  105. self, args: TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs
  106. ):
  107. logger.info("Loading state from peers")
  108. self.collaborative_optimizer.load_state_from_peers()
  109. def on_step_end(
  110. self, args: TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs
  111. ):
  112. control.should_log = True
  113. if not self.params_are_finite():
  114. self.restore_from_backup(self.latest_backup)
  115. return control
  116. if state.log_history:
  117. self.loss += state.log_history[-1]["loss"]
  118. self.steps += 1
  119. if self.collaborative_optimizer.local_step != self.last_reported_collaboration_step:
  120. self.last_reported_collaboration_step = self.collaborative_optimizer.local_step
  121. self.total_samples_processed += self.samples
  122. samples_per_second = self.collaborative_optimizer.performance_ema.samples_per_second
  123. statistics = utils.LocalMetrics(
  124. step=self.collaborative_optimizer.local_step,
  125. samples_per_second=samples_per_second,
  126. samples_accumulated=self.samples,
  127. loss=self.loss,
  128. mini_steps=self.steps,
  129. )
  130. logger.info(f"Step {self.collaborative_optimizer.local_step}")
  131. logger.info(f"Your current contribution: {self.total_samples_processed} samples")
  132. logger.info(f"Performance: {samples_per_second} samples per second.")
  133. if self.steps:
  134. logger.info(f"Local loss: {self.loss / self.steps}")
  135. if self.collaborative_optimizer.local_step % self.backup_every_steps == 0:
  136. self.latest_backup = self.backup_state()
  137. self.loss = 0
  138. self.steps = 0
  139. if self.collaborative_optimizer.is_synchronized:
  140. self.dht.store(
  141. key=self.collaborative_optimizer.prefix + "_metrics",
  142. subkey=self.local_public_key,
  143. value=statistics.dict(),
  144. expiration_time=hivemind.get_dht_time() + self.statistics_expiration,
  145. return_future=True,
  146. )
  147. self.samples = self.collaborative_optimizer.local_samples_accumulated
  148. return control
  149. @torch.no_grad()
  150. def params_are_finite(self):
  151. for param in self.model.parameters():
  152. if not torch.all(torch.isfinite(param)):
  153. return False
  154. return True
  155. @torch.no_grad()
  156. def backup_state(self) -> bytes:
  157. return pickle.dumps(
  158. {"model": self.model.state_dict(), "optimizer": self.collaborative_optimizer.opt.state_dict()}
  159. )
  160. @torch.no_grad()
  161. def restore_from_backup(self, backup: bytes):
  162. state = pickle.loads(backup)
  163. self.model.load_state_dict(state["model"])
  164. self.collaborative_optimizer.opt.load_state_dict(state["optimizer"])
  165. class NoOpScheduler(LRSchedulerBase):
  166. """Dummy scheduler for transformers.Trainer. The real scheduler is defined in CollaborativeOptimizer.scheduler"""
  167. def get_lr(self):
  168. return [group["lr"] for group in self.optimizer.param_groups]
  169. def print_lr(self, *args, **kwargs):
  170. if self.optimizer.scheduler:
  171. return self.optimizer.scheduler.print_lr(*args, **kwargs)
  172. def step(self):
  173. logger.debug("Called NoOpScheduler.step")
  174. self._last_lr = self.get_lr()
  175. def state_dict(self):
  176. return {}
  177. def load_state_dict(self, *args, **kwargs):
  178. logger.debug("Called NoOpScheduler.load_state_dict")
  179. def main():
  180. parser = HfArgumentParser((AlbertTrainingArguments, DatasetArguments, CollaborationArguments, AveragerArguments))
  181. training_args, dataset_args, collaboration_args, averager_args = parser.parse_args_into_dataclasses()
  182. logger.info(f"Found {len(collaboration_args.initial_peers)} initial peers: {collaboration_args.initial_peers}")
  183. setup_logging(training_args)
  184. # Set seed before initializing model.
  185. set_seed(training_args.seed)
  186. config = AlbertConfig.from_pretrained(dataset_args.config_path, cache_dir=dataset_args.cache_dir)
  187. tokenizer = AlbertTokenizerFast.from_pretrained(dataset_args.tokenizer_path, cache_dir=dataset_args.cache_dir)
  188. model = get_model(training_args, config, tokenizer)
  189. model.to(training_args.device)
  190. model.tie_weights()
  191. tokenized_datasets = load_from_disk(Path(dataset_args.dataset_path))
  192. # This data collator will take care of randomly masking the tokens.
  193. data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer)
  194. opt, scheduler = get_optimizer_and_scheduler(training_args, model)
  195. validators, local_public_key = utils.make_validators(collaboration_args.experiment_prefix)
  196. dht = hivemind.DHT(
  197. start=True,
  198. initial_peers=collaboration_args.initial_peers,
  199. client_mode=collaboration_args.client_mode,
  200. record_validators=validators,
  201. use_ipfs=collaboration_args.use_ipfs,
  202. host_maddrs=collaboration_args.host_maddrs,
  203. announce_maddrs=collaboration_args.announce_maddrs,
  204. identity_path=collaboration_args.identity_path,
  205. )
  206. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=collaboration_args.use_ipfs)
  207. total_batch_size_per_step = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
  208. if torch.cuda.device_count() != 0:
  209. total_batch_size_per_step *= torch.cuda.device_count()
  210. adjusted_target_batch_size = collaboration_args.target_batch_size - collaboration_args.batch_size_lead
  211. collaborative_optimizer = hivemind.CollaborativeOptimizer(
  212. opt=opt,
  213. dht=dht,
  214. scheduler=scheduler,
  215. prefix=collaboration_args.experiment_prefix,
  216. compression_type=CompressionType.Value(collaboration_args.compression),
  217. batch_size_per_step=total_batch_size_per_step,
  218. bandwidth=collaboration_args.bandwidth,
  219. target_batch_size=adjusted_target_batch_size,
  220. client_mode=collaboration_args.client_mode,
  221. verbose=True,
  222. start=True,
  223. **asdict(averager_args),
  224. )
  225. class TrainerWithIndependentShuffling(Trainer):
  226. def get_train_dataloader(self) -> DataLoader:
  227. """Shuffle data independently for each peer to avoid duplicating batches [important for quality]"""
  228. torch.manual_seed(hash(local_public_key))
  229. return super().get_train_dataloader()
  230. trainer = TrainerWithIndependentShuffling(
  231. model=model,
  232. args=training_args,
  233. tokenizer=tokenizer,
  234. data_collator=data_collator,
  235. train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
  236. eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
  237. optimizers=(collaborative_optimizer, NoOpScheduler(collaborative_optimizer)),
  238. callbacks=[
  239. CollaborativeCallback(
  240. dht,
  241. collaborative_optimizer,
  242. model,
  243. local_public_key,
  244. collaboration_args.statistics_expiration,
  245. collaboration_args.backup_every_steps,
  246. )
  247. ],
  248. )
  249. trainer.remove_callback(transformers.trainer_callback.PrinterCallback)
  250. trainer.remove_callback(transformers.trainer_callback.ProgressCallback)
  251. # Training
  252. if training_args.do_train:
  253. latest_checkpoint_dir = max(
  254. Path(training_args.output_dir).glob("checkpoint*"), default=None, key=os.path.getctime
  255. )
  256. trainer.train(model_path=latest_checkpoint_dir)
  257. def _mp_fn(index):
  258. # For xla_spawn (TPUs)
  259. main()
  260. if __name__ == "__main__":
  261. main()