run_server.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. import resource
  2. from contextlib import contextmanager
  3. import multiprocessing as mp
  4. import argparse
  5. import torch
  6. import hivemind
  7. from .layers import name_to_block, name_to_input
  8. def make_dummy_server(host='0.0.0.0', port=None, num_experts=1, expert_cls='ffn', hidden_dim=1024, num_handlers=None,
  9. expert_prefix='expert', expert_offset=0, max_batch_size=16384, device=None, no_optimizer=False,
  10. no_dht=False, initial_peers=(), dht_port=None, root_port=None, verbose=True, start=False,
  11. UID_DELIMETER=hivemind.DHTNode.UID_DELIMETER, **kwargs) -> hivemind.Server:
  12. """ A context manager that creates server in a background thread, awaits .ready on entry and shutdowns on exit """
  13. if verbose and len(kwargs) != 0:
  14. print("Ignored kwargs:", kwargs)
  15. assert expert_cls in name_to_block
  16. num_handlers = num_handlers if num_handlers is not None else num_experts * 8
  17. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  18. # initialize dht
  19. dht = None
  20. if not no_dht:
  21. if not len(initial_peers):
  22. print("No initial peers provided. Starting additional dht as an initial peer.")
  23. dht_root = hivemind.DHTNode(
  24. *initial_peers, port=root_port or hivemind.find_open_port(), start=True)
  25. print(f"Initializing DHT with port {dht_root.port}")
  26. initial_peers = (('localhost', dht_root.port),)
  27. else:
  28. print("Bootstrapping dht with peers:", initial_peers)
  29. if root_port is not None:
  30. print(f"Warning: root_port={root_port} will not be used since we already have peers.")
  31. dht = hivemind.DHTNode(
  32. *initial_peers, port=dht_port or hivemind.find_open_port(), start=True)
  33. if verbose:
  34. print(f"Running dht node on port {dht.port}")
  35. sample_input = name_to_input[expert_cls](4, hidden_dim)
  36. if isinstance(sample_input, tuple):
  37. args_schema = tuple(hivemind.BatchTensorProto.from_tensor(arg) for arg in sample_input)
  38. else:
  39. args_schema = (hivemind.BatchTensorProto.from_tensor(sample_input),)
  40. # initialize experts
  41. experts = {}
  42. for i in range(num_experts):
  43. expert = name_to_block[expert_cls](hidden_dim)
  44. opt = torch.optim.SGD(expert.parameters(), 0.0) if no_optimizer else torch.optim.Adam(expert.parameters())
  45. expert_uid = f'{expert_prefix}{UID_DELIMETER}{i + expert_offset}'
  46. experts[expert_uid] = hivemind.ExpertBackend(name=expert_uid, expert=expert, opt=opt,
  47. args_schema=args_schema,
  48. outputs_schema=hivemind.BatchTensorProto(hidden_dim),
  49. max_batch_size=max_batch_size,
  50. )
  51. # actually start server
  52. server = hivemind.Server(
  53. dht, experts, addr=host, port=port or hivemind.find_open_port(),
  54. conn_handler_processes=num_handlers, device=device)
  55. if start:
  56. server.run_in_background(await_ready=True)
  57. if verbose:
  58. print(f"Server started at {server.addr}:{server.port}")
  59. print(f"Got {num_experts} active experts of type {expert_cls}: {list(experts.keys())}")
  60. return server
  61. @contextmanager
  62. def background_server(*args, verbose=True, **kwargs):
  63. """ Runs server in a background process and returns a reference to it. """
  64. recv_addr, send_addr = mp.Pipe(duplex=True)
  65. trigger_shutdown = mp.Event()
  66. def server_runner():
  67. try:
  68. server = make_dummy_server(*args, verbose=verbose, start=True, **kwargs)
  69. dht_port = server.dht.port if server.dht is not None else None
  70. send_addr.send((server.addr, server.port, dht_port))
  71. trigger_shutdown.wait()
  72. finally:
  73. if verbose:
  74. print("Shutting down server...")
  75. trigger_shutdown.set() # if server failed internally, set the shutdown trigger anyway
  76. server.shutdown()
  77. if verbose:
  78. print("Server shut down successfully.")
  79. try:
  80. runner = mp.Process(target=server_runner)
  81. runner.start()
  82. yield recv_addr.recv() # yield tuple(hostname, port)
  83. finally:
  84. trigger_shutdown.set()
  85. runner.terminate()
  86. runner.join()
  87. if __name__ == '__main__':
  88. parser = argparse.ArgumentParser()
  89. parser.add_argument('--host', type=str, default='0.0.0.0', required=False)
  90. parser.add_argument('--port', type=int, default=None, required=False)
  91. parser.add_argument('--num_experts', type=int, default=1, required=False)
  92. parser.add_argument('--expert_cls', type=str, default='ffn', required=False)
  93. parser.add_argument('--hidden_dim', type=int, default=1024, required=False)
  94. parser.add_argument('--num_handlers', type=int, default=None, required=False)
  95. parser.add_argument('--expert_prefix', type=str, default='expert', required=False)
  96. parser.add_argument('--expert_offset', type=int, default=0, required=False)
  97. parser.add_argument('--max_batch_size', type=int, default=16384, required=False)
  98. parser.add_argument('--device', type=str, default=None, required=False)
  99. parser.add_argument('--no_optimizer', action='store_true')
  100. parser.add_argument('--no_dht', action='store_true')
  101. parser.add_argument('--initial_peers', type=str, default="[]", required=False)
  102. parser.add_argument('--dht_port', type=int, default=None, required=False)
  103. parser.add_argument('--root_port', type=int, default=None, required=False)
  104. parser.add_argument('--increase_file_limit', action='store_true')
  105. args = vars(parser.parse_args())
  106. if args.pop('increase_file_limit'):
  107. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  108. try:
  109. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  110. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  111. except:
  112. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  113. args['initial_peers'] = eval(args['initial_peers'])
  114. try:
  115. server = make_dummy_server(**args, start=True, verbose=True)
  116. server.join()
  117. finally:
  118. server.shutdown()