1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- import torch
- import torch.nn as nn
- from hivemind.utils.custom_layers import DeterministicDropout
- class FeedforwardBlock(nn.Module):
- def __init__(self, hid_dim):
- super().__init__()
- self.layers = nn.Sequential(
- nn.Linear(hid_dim, 4 * hid_dim),
- nn.LayerNorm(4 * hid_dim),
- nn.ReLU(inplace=True),
- nn.Linear(4 * hid_dim, 4 * hid_dim),
- nn.LayerNorm(4 * hid_dim),
- nn.ReLU(inplace=True),
- nn.Linear(4 * hid_dim, hid_dim),
- )
- def forward(self, x):
- return x + self.layers(x)
- class TransformerEncoderLayer(nn.Module):
- """
- A slight modification of torch.nn.TransformerEncoderLayer which allows for torch.jit scripting
- """
- def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
- super().__init__()
- self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
- # Implementation of Feedforward model
- self.linear1 = nn.Linear(d_model, dim_feedforward)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_feedforward, d_model)
- self.norm1 = nn.LayerNorm(d_model)
- self.norm2 = nn.LayerNorm(d_model)
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
- self.activation = torch.nn.GELU()
- def forward(self, src):
- src.transpose_(0, 1)
- src2 = self.self_attn(src, src, src)[0]
- src = src + self.dropout1(src2)
- src = self.norm1(src)
- src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
- src = src + self.dropout2(src2)
- src = self.norm2(src)
- src.transpose_(0, 1)
- return src
- class NopExpert(nn.Sequential):
- def __init__(self, hid_dim):
- super().__init__()
- self.w = nn.Parameter(torch.zeros(0), requires_grad=True)
- def forward(self, x):
- return x.clone()
- class DeterministicDropoutNetwork(nn.Module):
- def __init__(self, hid_dim, dropout_prob):
- super().__init__()
- self.linear_in = nn.Linear(hid_dim, 2 * hid_dim)
- self.activation = nn.ReLU()
- self.dropout = DeterministicDropout(dropout_prob)
- self.linear_out = nn.Linear(2 * hid_dim, hid_dim)
- def forward(self, x, mask):
- x = self.linear_in(self.dropout(x, mask))
- return self.linear_out(self.activation(x))
- name_to_block = {'ffn': lambda hid_dim: FeedforwardBlock(hid_dim),
- 'transformer': lambda hid_dim: TransformerEncoderLayer(hid_dim, nhead=16),
- 'nop': lambda hid_dim: NopExpert(hid_dim),
- 'det_dropout': lambda hid_dim: DeterministicDropoutNetwork(hid_dim, dropout_prob=0.2)}
- name_to_input = {'ffn': lambda batch_size, hid_dim: torch.empty((batch_size, hid_dim)),
- 'transformer': lambda batch_size, hid_dim: torch.empty((batch_size, 512, hid_dim)),
- 'nop': lambda batch_size, hid_dim: torch.empty((batch_size, hid_dim)),
- 'det_dropout': lambda batch_size, hid_dim:
- (torch.empty((batch_size, hid_dim)), torch.randint(0, 1, (batch_size, hid_dim)))}
|