test_optimizer.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. import ctypes
  2. import multiprocessing as mp
  3. import random
  4. import time
  5. from functools import partial
  6. import numpy as np
  7. import pytest
  8. import torch
  9. import torch.nn as nn
  10. import torch.nn.functional as F
  11. import hivemind
  12. from hivemind.averaging.control import AveragingStage
  13. from hivemind.optim.experimental.grad_averager import GradientAverager
  14. from hivemind.optim.experimental.optimizer import Optimizer
  15. from hivemind.optim.experimental.progress_tracker import ProgressTracker
  16. from hivemind.optim.experimental.state_averager import TrainingStateAverager
  17. from hivemind.utils.crypto import RSAPrivateKey
  18. @pytest.mark.forked
  19. def test_grad_averager():
  20. dht1 = hivemind.DHT(start=True)
  21. model1 = nn.ParameterDict({"w": nn.Parameter(torch.zeros(3))})
  22. averager1 = GradientAverager(
  23. model1.parameters(), dht=dht1, prefix="test", target_group_size=2, reuse_grad_buffers=False, start=True
  24. )
  25. dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs())
  26. model2 = nn.ParameterDict({"w": nn.Parameter(torch.zeros(3))})
  27. averager2 = GradientAverager(
  28. model2.parameters(), dht=dht2, prefix="test", target_group_size=2, reuse_grad_buffers=True, start=True
  29. )
  30. control1 = averager1.schedule_step(hivemind.get_dht_time() + 5)
  31. control2 = averager2.schedule_step(hivemind.get_dht_time() + 5)
  32. for i in range(10):
  33. time.sleep(0.1)
  34. if i % 3 == 0:
  35. loss1 = F.mse_loss(model1.w, torch.ones(3))
  36. loss1.backward()
  37. averager1.accumulate_grads_(batch_size=2) # total: 4 times * 2 samples = 8
  38. model1.zero_grad()
  39. else:
  40. loss2 = F.mse_loss(model2.w, -torch.ones(3))
  41. loss2.backward()
  42. averager2.accumulate_grads_(batch_size=3) # total: 6 times * 3 samples = 18
  43. # note: we do not call zero grad here because reuse_grad_buffers=True
  44. assert control1.stage == control2.stage == AveragingStage.AWAITING_TRIGGER
  45. peer1_samples, peer1_times, peer2_samples, peer2_times = 8, 4, 18, 6
  46. assert averager1.local_samples_accumulated == peer1_samples and averager1.local_times_accumulated == peer1_times
  47. ref_grads1 = torch.full((3,), -2 * 1 / 3 * averager1.local_times_accumulated)
  48. assert torch.allclose(next(averager1._grad_accumulators()), ref_grads1)
  49. assert averager2.local_samples_accumulated == peer2_samples and averager2.local_times_accumulated == peer2_times
  50. ref_grads2 = torch.full((3,), 2 * 1 / 3 * averager2.local_times_accumulated)
  51. assert torch.allclose(next(averager2._grad_accumulators()), ref_grads2)
  52. averager1.step(control=control1, wait=False)
  53. averager2.step(control=control2, wait=False)
  54. for step in (control1, control2):
  55. step.result() # wait for all-reduce to finish
  56. peer1_weight = peer1_samples / (peer1_samples + peer2_samples)
  57. peer2_weight = peer2_samples / (peer1_samples + peer2_samples)
  58. ref_average = peer1_weight * (ref_grads1 / peer1_times) + peer2_weight * (ref_grads2 / peer2_times)
  59. with averager1.use_averaged_gradients():
  60. assert torch.allclose(model1.w.grad, ref_average)
  61. with averager2.use_averaged_gradients():
  62. assert torch.allclose(model2.w.grad, ref_average)
  63. # after no longer use_averaged_gradients
  64. assert not torch.allclose(model1.w.grad, ref_average)
  65. assert not torch.allclose(model2.w.grad, ref_average)
  66. @pytest.mark.forked
  67. @pytest.mark.parametrize(
  68. "offload_optimizer, reuse_tensors, sync_epoch_when_averaging",
  69. [(False, False, False), (True, False, False), (False, True, True), (True, False, True)],
  70. )
  71. def test_state_averager(offload_optimizer: bool, reuse_tensors: bool, sync_epoch_when_averaging: bool):
  72. dht1 = hivemind.DHT(start=True)
  73. dht2 = hivemind.DHT(initial_peers=dht1.get_visible_maddrs(), start=True)
  74. torch.manual_seed(1337)
  75. torch.use_deterministic_algorithms(True)
  76. # note: use_deterministic_algorithms does not affect further tests because this test is forked
  77. model1 = nn.Linear(2, 3)
  78. model2 = nn.Linear(2, 3)
  79. extras1 = (torch.randn(2, 2), -torch.rand(1))
  80. extras2 = (-torch.randn(2, 2), torch.rand(1))
  81. common_kwargs = dict(
  82. optimizer=partial(torch.optim.Adam, lr=0.1, betas=(0.9, 0.9)),
  83. scheduler=partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lambda t: 1.0 / max(1, t)),
  84. sync_epoch_when_averaging=sync_epoch_when_averaging,
  85. average_opt_statistics=("exp_avg_sq",),
  86. offload_optimizer=offload_optimizer,
  87. reuse_tensors=reuse_tensors,
  88. target_group_size=2,
  89. prefix="my_exp",
  90. )
  91. avgr1 = TrainingStateAverager(
  92. dht=dht1, params=model1.parameters(), extra_tensors=extras1, start=True, **common_kwargs
  93. )
  94. avgr2 = TrainingStateAverager(
  95. dht=dht2, params=model2.parameters(), extra_tensors=extras2, start=True, **common_kwargs
  96. )
  97. x = torch.ones(2)
  98. for step in range(20):
  99. F.mse_loss(model1(x), torch.ones(3)).mul(2).backward()
  100. avgr1.step(optimizer_step=True, zero_grad=True, averaging_round=(step == 10), delay_averaging=True)
  101. F.mse_loss(model2(x), -torch.ones(3)).backward()
  102. avgr2.step(optimizer_step=True, zero_grad=True, averaging_round=(step == 10), delay_averaging=False)
  103. assert torch.all(model1.weight.grad == 0) and torch.all(model2.weight.grad == 0), "zero grad did not trigger"
  104. assert model1(x).mean() > 0.5 and model2(x).mean() < -0.5, "models did not train properly"
  105. assert torch.allclose(extras1[0], extras2[0]), "first extra tensors were not averaged"
  106. assert torch.allclose(extras1[1], extras2[1]), "second extra tensors were not averaged"
  107. stats1 = avgr1.optimizer.state_dict()["state"][0]["exp_avg_sq"].clone()
  108. stats2 = avgr2.optimizer.state_dict()["state"][0]["exp_avg_sq"].clone()
  109. assert not torch.allclose(stats1, stats2)
  110. avgr1.step(increment_epoch=True)
  111. avgr1.step(increment_epoch=True, averaging_round=True, delay_averaging=True)
  112. avgr2.step(increment_epoch=True, averaging_round=True, delay_averaging=True)
  113. avgr1.step(wait_for_delayed_update=True)
  114. avgr2.step(wait_for_delayed_update=True)
  115. assert torch.allclose(model1(x), model2(x)), "model parameters were not averaged correctly"
  116. assert torch.allclose(avgr1.optimizer.state_dict()["state"][0]["exp_avg_sq"], (stats1 + stats2) / 2)
  117. assert torch.allclose(avgr2.optimizer.state_dict()["state"][0]["exp_avg_sq"], (stats1 + stats2) / 2)
  118. assert avgr1.local_epoch == 2
  119. assert avgr2.local_epoch == (2 if sync_epoch_when_averaging else 1)
  120. @pytest.mark.forked
  121. def test_load_state_from_peers():
  122. dht1 = hivemind.DHT(start=True)
  123. dht2 = hivemind.DHT(initial_peers=dht1.get_visible_maddrs(), start=True)
  124. model1 = nn.Linear(2, 3)
  125. model2 = nn.Linear(2, 3)
  126. common_kwargs = dict(
  127. optimizer=partial(torch.optim.SGD, lr=0.1),
  128. scheduler=partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lambda t: 1.0 / max(1, t)),
  129. target_group_size=2,
  130. prefix="my_exp",
  131. )
  132. avgr1 = TrainingStateAverager(
  133. dht=dht1, params=model1.parameters(), allow_state_sharing=False, start=True, **common_kwargs
  134. )
  135. avgr2 = TrainingStateAverager(dht=dht2, params=model2.parameters(), start=True, **common_kwargs)
  136. avgr2.local_epoch = 1337
  137. model2.weight.data[...] = 42
  138. time.sleep(0.1)
  139. avgr1.load_state_from_peers()
  140. assert avgr1.local_epoch == 1337
  141. assert torch.all(model1.weight == 42).item()
  142. assert np.allclose(avgr1.optimizer.param_groups[0]["lr"], 0.1 / 1337)
  143. @pytest.mark.forked
  144. def test_progress_tracker():
  145. # note to a curious reader: no, you cannot reduce the timings without compromising realism or stability
  146. prefix = "my_exp"
  147. target_batch_size = 256
  148. dht_root = hivemind.DHT(start=True)
  149. barrier = mp.Barrier(parties=5)
  150. delayed_start_evt = mp.Event()
  151. finished_evt = mp.Event()
  152. emas = mp.Array(ctypes.c_double, 5)
  153. def run_worker(index: int, batch_size: int, period: float, **kwargs):
  154. dht = hivemind.DHT(initial_peers=dht_root.get_visible_maddrs(), start=True)
  155. tracker = ProgressTracker(
  156. dht,
  157. prefix,
  158. target_batch_size,
  159. start=True,
  160. min_refresh_period=0.1,
  161. default_refresh_period=0.2,
  162. max_refresh_period=0.5,
  163. private_key=RSAPrivateKey(),
  164. **kwargs,
  165. )
  166. barrier.wait()
  167. if index == 4:
  168. delayed_start_evt.wait()
  169. local_epoch = 2 if index == 4 else 0
  170. samples_accumulated = 0
  171. while True:
  172. time.sleep(period)
  173. if finished_evt.is_set():
  174. break
  175. samples_accumulated += batch_size
  176. tracker.report_local_progress(local_epoch, samples_accumulated)
  177. if tracker.ready_to_update_epoch:
  178. if index == 4 and local_epoch >= 4:
  179. time.sleep(0.5)
  180. break
  181. with tracker.pause_updates():
  182. local_epoch = tracker.update_epoch(local_epoch + 1)
  183. samples_accumulated = 0
  184. emas[index] = tracker.performance_ema.samples_per_second
  185. tracker.shutdown()
  186. dht.shutdown()
  187. workers = [
  188. mp.Process(target=run_worker, kwargs=dict(index=1, batch_size=12, period=0.6)),
  189. mp.Process(target=run_worker, kwargs=dict(index=2, batch_size=16, period=0.5)),
  190. mp.Process(target=run_worker, kwargs=dict(index=3, batch_size=24, period=0.4)),
  191. mp.Process(target=run_worker, kwargs=dict(index=4, batch_size=64, period=0.4)),
  192. ]
  193. for worker in workers:
  194. worker.start()
  195. tracker = ProgressTracker(
  196. dht_root,
  197. prefix,
  198. target_batch_size,
  199. start=True,
  200. min_refresh_period=0.1,
  201. default_refresh_period=0.2,
  202. max_refresh_period=0.5,
  203. )
  204. barrier.wait()
  205. local_epoch = 0
  206. last_timestamp = hivemind.get_dht_time()
  207. step_time_deltas = []
  208. while local_epoch < 6:
  209. time.sleep(0.1)
  210. if tracker.ready_to_update_epoch:
  211. with tracker.pause_updates():
  212. local_epoch = tracker.update_epoch(local_epoch + 1)
  213. time_delta = hivemind.get_dht_time() - last_timestamp
  214. if local_epoch == 2:
  215. delayed_start_evt.set()
  216. last_timestamp = hivemind.get_dht_time()
  217. step_time_deltas.append(time_delta)
  218. finished_evt.set()
  219. for worker in workers:
  220. worker.join()
  221. tracker.shutdown()
  222. dht_root.shutdown()
  223. assert not tracker.is_alive()
  224. mean_step_time = sum(step_time_deltas) / len(step_time_deltas)
  225. print(step_time_deltas, mean_step_time)
  226. for i in (0, 1, 5): # Without the 4th worker (the fastest one)
  227. assert 1.05 * mean_step_time < step_time_deltas[i] < 2.0 * mean_step_time
  228. for i in (2, 3, 4): # With the 4th worker
  229. assert 0.5 * mean_step_time < step_time_deltas[i] < 0.95 * mean_step_time
  230. assert emas[1] < emas[2] < emas[3] < emas[4]
  231. assert tracker.performance_ema.samples_per_second < 1e-9
  232. @pytest.mark.forked
  233. def test_optimizer(
  234. num_peers: int = 2,
  235. num_clients: int = 1,
  236. target_batch_size: int = 64,
  237. total_epochs: int = 3,
  238. reuse_grad_buffers: bool = True,
  239. delay_grad_averaging: bool = True,
  240. delay_optimizer_step: bool = True,
  241. average_state_every: int = 1,
  242. ):
  243. dht = hivemind.DHT(start=True)
  244. features = torch.randn(100, 5)
  245. targets = features @ torch.randn(5, 1)
  246. optimizer = None
  247. def run_trainer(batch_size: int, batch_time: float, client_mode: bool, verbose: bool):
  248. nonlocal optimizer
  249. model = nn.Linear(5, 1)
  250. assert isinstance(model, torch.nn.Module), "model_arch must evaluate to a pytorch module"
  251. optimizer = Optimizer(
  252. prefix="test_run",
  253. target_batch_size=target_batch_size,
  254. batch_size_per_step=batch_size,
  255. params=model.parameters(),
  256. optimizer=partial(torch.optim.SGD, lr=0.1),
  257. scheduler=partial(torch.optim.lr_scheduler.StepLR, gamma=0.5, step_size=1),
  258. dht=hivemind.DHT(initial_peers=dht.get_visible_maddrs(), client_mode=client_mode, start=True),
  259. tracker_opts=dict(private_key=RSAPrivateKey(), max_refresh_period=1.0),
  260. averager_opts=dict(min_matchmaking_time=1.0, request_timeout=0.5),
  261. matchmaking_time=1.0,
  262. averaging_timeout=5.0,
  263. reuse_grad_buffers=reuse_grad_buffers,
  264. delay_grad_averaging=delay_grad_averaging,
  265. delay_optimizer_step=delay_optimizer_step,
  266. average_state_every=average_state_every,
  267. client_mode=client_mode,
  268. verbose=verbose,
  269. )
  270. optimizer.load_state_from_peers()
  271. prev_time = time.perf_counter()
  272. while optimizer.local_epoch < total_epochs:
  273. time.sleep(max(0.0, prev_time + random.gauss(batch_time, 0.1) - time.perf_counter()))
  274. batch = torch.randint(0, len(features), (batch_size,))
  275. loss = F.mse_loss(model(features[batch]), targets[batch])
  276. loss.backward()
  277. optimizer.step()
  278. if not reuse_grad_buffers:
  279. optimizer.zero_grad()
  280. prev_time = time.perf_counter()
  281. time.sleep(1.0)
  282. optimizer.shutdown()
  283. return optimizer
  284. peers = []
  285. for index in range(num_peers):
  286. peers.append(
  287. mp.Process(
  288. target=run_trainer,
  289. name=f"trainer-{index}",
  290. kwargs=dict(
  291. batch_size=4 + index,
  292. batch_time=0.3 + 0.2 * index,
  293. client_mode=(index >= num_peers - num_clients),
  294. verbose=(index == 0),
  295. ),
  296. )
  297. )
  298. for peer in peers[1:]:
  299. peer.start()
  300. peers[0].run()
  301. for peer in peers[1:]:
  302. peer.join()
  303. assert isinstance(optimizer, Optimizer)
  304. assert optimizer.local_epoch == total_epochs