run_server.py 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. from typing import Optional
  2. import configargparse
  3. import resource
  4. from hivemind.server import Server
  5. if __name__ == '__main__':
  6. # fmt:off
  7. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  8. parser.add('-c', '--my-config', required=False, is_config_file=True, help='config file path')
  9. parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
  10. help="'localhost' for local connections only, '0.0.0.0' for ipv4 '::' for ipv6")
  11. parser.add_argument('--num_experts', type=int, default=1, required=False, help="run this many identical experts")
  12. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  13. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
  14. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  15. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  16. help='server will use this many processes to handle incoming requests')
  17. parser.add_argument('--expert_prefix', type=str, default='expert', required=False,
  18. help='all expert uids will be {expert_prefix}.{index}')
  19. parser.add_argument('--expert_offset', type=int, default=0, required=False,
  20. help='expert uid will use indices in range(expert_offset, expert_offset + num_experts)')
  21. parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
  22. help='total num examples in the same batch will not exceed this value')
  23. parser.add_argument('--device', type=str, default=None, required=False,
  24. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  25. parser.add_argument('--no_optimizer', action='store_true', help='if specified, all optimizers use learning rate=0')
  26. parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
  27. parser.add_argument('--initial_peers', type=str, default="[]", required=False, help='a list of peers that will'
  28. ' introduce this node to the dht, e.g. [("1.2.3.4", 1337), ("127.0.0.1", 4321)]')
  29. parser.add_argument('--dht_port', type=int, default=None, required=False, help='DHT node will listen on this port')
  30. parser.add_argument('--root_port', type=int, default=None, required=False, help='If this server does not have peers'
  31. ', it will create a virtual dht node on this port. You can then use this node as initial peer.')
  32. parser.add_argument('--increase_file_limit', action='store_true', help='On *nix, this will increase the max number'
  33. ' of processes a server can spawn before hitting "Too many open files"; Use at your own risk.')
  34. # fmt:on
  35. args = vars(parser.parse_args())
  36. if args.pop('increase_file_limit'):
  37. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  38. try:
  39. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  40. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  41. except:
  42. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  43. args['initial_peers'] = eval(args['initial_peers'])
  44. try:
  45. server = Server.create(**args, start=True, verbose=True)
  46. server.join()
  47. finally:
  48. server.shutdown()