run_server.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. from functools import partial
  2. from pathlib import Path
  3. import configargparse
  4. import torch
  5. from hivemind.moe import Server
  6. from hivemind.moe.server.layers import schedule_name_to_scheduler
  7. from hivemind.proto.runtime_pb2 import CompressionType
  8. from hivemind.utils.limits import increase_file_limit
  9. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  10. use_hivemind_log_handler("in_root_logger")
  11. logger = get_logger(__name__)
  12. def main():
  13. # fmt:off
  14. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  15. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  16. parser.add_argument('--num_experts', type=int, default=None, required=False, help="The number of experts to serve")
  17. parser.add_argument('--expert_pattern', type=str, default=None, required=False,
  18. help='all expert uids will follow this pattern, e.g. "myexpert.[0:256].[0:1024]" will'
  19. ' sample random expert uids between myexpert.0.0 and myexpert.255.1023 . Use either'
  20. ' num_experts and this or expert_uids')
  21. parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
  22. help="specify the exact list of expert uids to create. Use either this or num_experts"
  23. " and expert_pattern, not both")
  24. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  25. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'")
  26. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  27. parser.add_argument('--host_maddrs', type=list, nargs='+', default=['/ip4/0.0.0.0/tcp/0'], required=False,
  28. help='Multiaddrs to listen for external connections from other p2p instances; default: all IPv4 and TCP: /ip4/0.0.0.0/tcp/0')
  29. parser.add_argument('--announce_maddrs', type=list, nargs='+', default=None, required=False,
  30. help='Visible multiaddrs the host announces for external connections from other p2p instances')
  31. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  32. help='server will use this many processes to handle incoming requests')
  33. parser.add_argument('--min_batch_size', type=int, default=1,
  34. help='Minimum required batch size for all expert operations')
  35. parser.add_argument('--max_batch_size', type=int, default=16384,
  36. help='The total number of examples in the same batch will not exceed this value')
  37. parser.add_argument('--device', type=str, default=None, required=False,
  38. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  39. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  40. parser.add_argument('--scheduler', type=str, choices=schedule_name_to_scheduler.keys(), default='none',
  41. help='LR scheduler type to use')
  42. parser.add_argument('--num_warmup_steps', type=int, required=False,
  43. help='The number of warmup steps for LR schedule')
  44. parser.add_argument('--update_period', type=float, required=False, default=30,
  45. help='Server will report experts to DHT once in this many seconds')
  46. parser.add_argument('--expiration', type=float, required=False, default=None,
  47. help='DHT entries will expire after this many seconds')
  48. parser.add_argument('--num_total_steps', type=int, required=False, help='The total number of steps for LR schedule')
  49. parser.add_argument('--clip_grad_norm', type=float, required=False, help='Maximum gradient norm used for clipping')
  50. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[],
  51. help='multiaddrs of one or more active DHT peers (if you want to join an existing DHT)')
  52. parser.add_argument('--increase_file_limit', action='store_true',
  53. help='On *nix, this will increase the max number of processes '
  54. 'a server can spawn before hitting "Too many open files"; Use at your own risk.')
  55. parser.add_argument('--compression', type=str, default='NONE', required=False, help='Tensor compression for gRPC')
  56. parser.add_argument('--checkpoint_dir', type=Path, required=False, help='Directory to store expert checkpoints')
  57. parser.add_argument('--stats_report_interval', type=int, required=False,
  58. help='Interval between two reports of batch processing performance statistics')
  59. parser.add_argument('--custom_module_path', type=str, required=False,
  60. help='Path of a file with custom nn.modules, wrapped into special decorator')
  61. parser.add_argument('--identity_path', type=str, required=False, help='Path to identity file to be used in P2P')
  62. # fmt:on
  63. args = vars(parser.parse_args())
  64. args.pop("config", None)
  65. optimizer = args.pop("optimizer")
  66. if optimizer == "adam":
  67. optim_cls = torch.optim.Adam
  68. elif optimizer == "sgd":
  69. optim_cls = partial(torch.optim.SGD, lr=0.01)
  70. elif optimizer == "none":
  71. optim_cls = None
  72. else:
  73. raise ValueError("optim_cls must be adam, sgd or none")
  74. if args.pop("increase_file_limit"):
  75. increase_file_limit()
  76. compression_type = args.pop("compression")
  77. compression = getattr(CompressionType, compression_type)
  78. server = Server.create(**args, optim_cls=optim_cls, start=True, compression=compression)
  79. try:
  80. server.join()
  81. except KeyboardInterrupt:
  82. logger.info("Caught KeyboardInterrupt, shutting down")
  83. finally:
  84. server.shutdown()
  85. if __name__ == "__main__":
  86. main()